首页> 外文期刊>Scientific programming >Tool support for software lookup table optimization
【24h】

Tool support for software lookup table optimization

机译:工具支持软件查找表优化

获取原文
获取原文并翻译 | 示例

摘要

A number of scientific applications are performance-limited by expressions that repeatedly call costly elementary functions. Lookup table (LUT) optimization accelerates the evaluation of such functions by reusing previously computed results. LUT methods can speed up applications that tolerate an approximation of function results, thereby achieving a high level of fuzzy reuse. One problem with LUT optimization is the difficulty of controlling the tradeoff between performance and accuracy. The current practice of manual LUT optimization adds programming effort by requiring extensive experimentation to make this tradeoff, and such hand tuning can obfuscate algorithms. In this paper we describe a methodology and tool implementation to improve the application of software LUT optimization. Our Mesa tool implements source-to-source transformations for C or C++ code to automate the tedious and error-prone aspects of LUT generation such as domain profiling, error analysis, and code generation. We evaluate Mesa with five scientific applications. Our results show a performance improvement of 3.0× and 6.9× for two molecular biology algorithms, 1 4× for a molecular dynamics program, 2.1 × to 2.8 × for a neural network application, and 4.6 × for a hydrology calculation. We find that Mesa enables LUT optimization with more control over accuracy and less effort than manual approaches.
机译:许多科学应用程序的性能受到重复调用昂贵的基本函数的表达式的限制。查找表(LUT)优化通过重用先前计算的结果来加快对此类功能的评估。 LUT方法可以加快可忍受函数结果近似值的应用程序,从而实现高水平的模糊重用。 LUT优化的一个问题是难以控制性能和精度之间的折衷。手动LUT优化的当前做法是通过进行大量试验来进行折衷,从而增加了编程工作,而这种手动调整会使算法变得模糊。在本文中,我们描述了一种方法和工具实现,以改善软件LUT优化的应用。我们的Mesa工具为C或C ++代码实现了源到源的转换,以自动化LUT生成的繁琐且容易出错的方面,例如域分析,错误分析和代码生成。我们通过五项科学应用评估Mesa。我们的结果表明,两种分子生物学算法的性能提高了3.0倍和6.9倍,分子动力学程序的性能提高了1倍,神经网络应用程序的性能提高了2.1倍至2.8倍,水文学计算的性能提高了4.6倍。我们发现,与手动方法相比,Mesa通过更精确的控制和更少的努力来实现LUT优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号