首页> 外文期刊>Scientific programming >An Efficient Algorithm for On-the-Fly Data Race Detection Using an Epoch-Based Technique
【24h】

An Efficient Algorithm for On-the-Fly Data Race Detection Using an Epoch-Based Technique

机译:一种基于历元的实时数据种族检测的高效算法

获取原文
获取原文并翻译 | 示例

摘要

Data races represent the most notorious class of concurrency bugs in multithreaded programs. To detect data races precisely and efficiently during the execution of multithreaded programs, the epoch-based FASTTRACK technique has been employed. However, FASTTRACK has time and space complexities that depend on the maximum parallelism of the program to partially maintain expensive data structures, such as vector clocks. This paper presents an efficient algorithm, called iFT, that uses only the epochs of the access histories. Unlike FASTTRACK, our algorithm requires O(1) operations to maintain an access history and locate data races, without any switching between epochs and vector clocks. We implement this algorithm on top of the Pin binary instrumentation framework and compare it with other on-the-fly detection algorithms, including FASTTRACK, which uses a state-of-the-art happens-before analysis algorithm. Empirical results using the PARSEC benchmark show that iFT reduces the average runtime and memory overhead to 84% and 37%, respectively, of those of FASTTRACK.
机译:数据争用代表了多线程程序中最臭名昭著的并发错误类别。为了在执行多线程程序期间精确有效地检测数据争用,已采用了基于时代的FASTTRACK技术。但是,FASTTRACK的时间和空间复杂度取决于程序的最大并行度,以部分维护昂贵的数据结构,例如矢量时钟。本文提出了一种称为iFT的高效算法,该算法仅使用访问历史记录的纪元。与FASTTRACK不同,我们的算法需要O(1)操作来维护访问历史记录并定位数据竞争,而在历元和矢量时钟之间没有任何切换。我们在Pin二进制仪器框架的顶部实现了该算法,并将其与其他快速检测算法(包括FASTTRACK)进行了比较,该算法使用了最新的事前分析算法。使用PARSEC基准测试的经验结果表明,iFT将平均运行时间和内存开销分别降低到FASTTRACK的84%和37%。

著录项

  • 来源
    《Scientific programming》 |2015年第2015期|205827.1-205827.14|共14页
  • 作者

    Ha Ok-Kyoon; Jun Yong-Kee;

  • 作者单位

    Gyeongsang Natl Univ, Engn Res Inst, Jinju 660701, Gyeongsangnam D, South Korea;

    Gyeongsang Natl Univ, Dept Informat, Jinju 660701, Gyeongsangnam D, South Korea;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号