首页> 外文期刊>Scientific programming >Parallelizing SLPA for Scalable Overlapping Community Detection
【24h】

Parallelizing SLPA for Scalable Overlapping Community Detection

机译:并行SLPA用于可扩展的重叠社区检测

获取原文
获取原文并翻译 | 示例

摘要

Communities in networks are groups of nodes whose connections to the nodes in a community are stronger than with the nodes in the rest of the network. Quite often nodes participate in multiple communities; that is, communities can overlap. In this paper, we first analyze what other researchers have done to utilize high performance computing to perform efficient community detection in social, biological, and other networks. We note that detection of overlapping communities is more computationally intensive than disjoint community detection, and the former presents new challenges that algorithm designers have to face. Moreover, the efficiency of many existing algorithms grows superlinearly with the network size making them unsuitable to process large datasets. We use the Speaker-Listener Label Propagation Algorithm (SLPA) as the basis for our parallel overlapping community detection implementation. SLPA provides near linear time overlapping community detection and is well suited for parallelization. We explore the benefits of a multithreaded programming paradigm and show that it yields a significant performance gain over sequential execution while preserving the high quality of community detection. The algorithm was tested on four real-world datasets with up to 5.5 million nodes and 170 million edges. In order to assess the quality of community detection, at least 4 different metrics were used for each of the datasets.
机译:网络中的社区是节点的组,其与社区中的节点的连接比与网络其余部分的连接更牢固。节点经常参与多个社区。也就是说,社区可以重叠。在本文中,我们首先分析其他研究人员为利用高性能计算在社会,生物和其他网络中执行有效的社区检测所做的工作。我们注意到重叠社区的检测比不相交的社区检测在计算上更加密集,并且前者提出了算法设计者必须面对的新挑战。此外,许多现有算法的效率随着网络规模的增加而呈线性增长,这使其不适用于处理大型数据集。我们使用说话者-收听者标签传播算法(SLPA)作为并行重叠社区检测实现的基础。 SLPA提供接近线性的时间重叠社区检测,非常适合并行化。我们探索了多线程编程范例的好处,并表明,在保持社区检测的高质量的同时,与顺序执行相比,它可以显着提高性能。该算法在具有550万个节点和1.7亿条边的四个真实世界数据集上进行了测试。为了评估社区检测的质量,每个数据集至少使用4个不同的指标。

著录项

  • 来源
    《Scientific programming》 |2015年第2015期|461362.1-461362.18|共18页
  • 作者单位

    Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA;

    Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA;

    Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA|Wroclaw Univ Technol, Fac Comp Sci & Management, PL-50370 Wroclaw, Poland;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号