首页> 外文期刊>Scientific programming >Scalable Parallel Distributed Coprocessor System for Graph Searching Problems with Massive Data
【24h】

Scalable Parallel Distributed Coprocessor System for Graph Searching Problems with Massive Data

机译:海量数据图搜索问题的可扩展并行分布式协处理器系统

获取原文
获取原文并翻译 | 示例

摘要

The Internet applications, such as network searching, electronic commerce, and modern medical applications, produce and process massive data. Considerable data parallelism exists in computation processes of data-intensive applications. A traversal algorithm, breadth-first search (BFS), is fundamental in many graph processing applications and metrics when a graph grows in scale. A variety of scientific programming methods have been proposed for accelerating and parallelizing BFS because of the poor temporal and spatial locality caused by inherent irregular memory access patterns. However, new parallel hardware could provide better improvement for scientific methods. To address small-world graph problems, we propose a scalable and novel field-programmable gate array-based heterogeneous multicore system for scientific programming. The core is multithread for streaming processing. And the communication network InfiniBand is adopted for scalability. We design a binary search algorithm to address mapping to unify all processor addresses. Within the limits permitted by the Graph500 test bench after 1D parallel hybrid BFS algorithm testing, our 8-core and 8-thread-per-core system achieved superior performance and efficiency compared with the prior work under the same degree of parallelism. Our system is efficient not as a special acceleration unit but as a processor platform that deals with graph searching applications.
机译:Internet应用程序(例如网络搜索,电子商务和现代医疗应用程序)会生成和处理海量数据。数据密集型应用程序的计算过程中存在相当大的数据并行性。遍历优先搜索(BFS)遍历算法是许多图形处理应用程序和度量标准的基础,当图形按比例增长时。由于固有的不规则存储器访问模式引起的时间和空间局部性差,已经提出了多种科学编程方法来加速和并行化BFS。但是,新的并行硬件可以为科学方法提供更好的改进。为了解决小世界图形问题,我们提出了一种可扩展的,新颖的基于现场可编程门阵列的异构多核系统,用于科学编程。核心是用于流处理的多线程。并且采用通信网络InfiniBand来实现可伸缩性。我们设计了一种二进制搜索算法来进行地址映射,以统一所有处理器地址。在1D并行混合BFS算法测试后,在Graph500测试平台允许的范围内,我们的8核和8线程/每核系统在相同的并行度下比以前的工作具有更高的性能和效率。我们的系统不是作为特殊的加速单元而是作为处理图形搜索应用程序的处理器平台而有效。

著录项

  • 来源
    《Scientific programming》 |2017年第2期|1496104.1-1496104.9|共9页
  • 作者单位

    Natl Univ Def Technol, Sch Comp, Deya Rd 109, Changsha 410073, Hunan, Peoples R China;

    Natl Univ Def Technol, Sch Comp, Deya Rd 109, Changsha 410073, Hunan, Peoples R China;

    Natl Univ Def Technol, Sch Comp, Deya Rd 109, Changsha 410073, Hunan, Peoples R China;

    Natl Univ Def Technol, Sch Comp, Deya Rd 109, Changsha 410073, Hunan, Peoples R China;

    Natl Univ Def Technol, Sch Comp, Deya Rd 109, Changsha 410073, Hunan, Peoples R China;

    Natl Univ Def Technol, Sch Comp, Deya Rd 109, Changsha 410073, Hunan, Peoples R China;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号