首页> 外文期刊>Scientific programming >SKETRACK: Stroke-Based Recognition of Online Hand-Drawn Sketches of Arrow-Connected Diagrams and Digital Logic Circuit Diagrams
【24h】

SKETRACK: Stroke-Based Recognition of Online Hand-Drawn Sketches of Arrow-Connected Diagrams and Digital Logic Circuit Diagrams

机译:Sketrack:基于笔划的箭头连接图和数字逻辑电路图的在线手绘草图的识别

获取原文
获取原文并翻译 | 示例

摘要

Digitalization of handwritten documents has created a greater need for accurate online recognition of hand-drawn sketches. However, the online recognition of hand-drawn diagrams is an enduring challenge in human-computer interaction due to the complexity in extracting and recognizing the visual objects reliably from a continuous stroke stream. This paper focuses on the design and development of a new, efficient stroke-based online hand-drawn sketch recognition scheme named SKETRACK for hand-drawn arrow diagrams and digital logic circuit diagrams. The fundamental parts of this model are text separation, symbol segmentation, feature extraction, classification, and structural analysis. The proposed scheme utilizes the concepts of normalization and segmentation to isolate the text from the sketches. Then, the features are extracted to model different structural variations of the strokes that are categorized into the arrows/lines and the symbols for effective processing. The strokes are clustered using the spectral clustering algorithm based on p-distance and Euclidean distance to compute the similarity between the features and minimize the feature dimensionality by grouping similar features. Then, the symbol recognition is performed using modified support vector machine (MSVM) classifier in which a hybrid kernel function with a lion optimized tuning parameter of SVM is utilized. Structural analysis is performed with lion-based task optimization for recognizing the symbol candidates to form the final diagram representations. This proposed recognition model is suitable for simpler structures such as flowcharts, finite automata, and the logic circuit diagrams. Through the experiments, the performance of the proposed SKETRACK scheme is evaluated on three domains of databases and the results are compared with the state-of-the-art methods to validate its superior efficiency.
机译:手写文件的数字化创造了准确的在线识别手绘草图的需要更大。然而,手绘图的在线识别是由于在从连续行程流中可靠地提取和识别视觉物体而导致的人机相互作用的持久挑战。本文重点介绍了一种新的高效行程的在线手绘草图识别方案的设计和开发,名为Sketrack,用于手绘箭头图和数字逻辑电路图。该模型的基本部分是文本分离,符号分割,特征提取,分类和结构分析。该拟议方案利用标准化和分割的概念隔离草图中的文本。然后,提取该特征以模拟分类为箭头/线的描绘的不同结构变型以及用于有效处理的符号。使用基于P距离和欧几里德距离的光谱聚类算法进行聚类,以计算特征之间的相似性,并通过分组类似的特征来最小化特征维度。然后,使用修改的支持向量机(MSVM)分类器执行符号识别,其中利用具有SVM的狮子优化调谐参数的混合内核功能。通过基于狮子的任务优化进行结构分析,用于识别符号候选者以形成最终图表表示。该提出的识别模型适用于更简单的结构,例如流程图,有限自动机和逻辑电路图。通过实验,在数据库的三个域中评估所提出的Sketrack方案的性能,并将结果与​​最先进的方法进行比较,以验证其优越效率。

著录项

  • 来源
    《Scientific programming》 |2019年第2期|6501264.1-6501264.17|共17页
  • 作者

    Altun Oguz; Nooruldeen Orhan;

  • 作者单位

    Yildiz Tech Univ Fac Elect & Elect Engn Dept Comp Engn Istanbul Turkey;

    Yildiz Tech Univ Fac Elect & Elect Engn Dept Comp Engn Istanbul Turkey;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号