首页> 外文期刊>Scientific programming >Low-Complexity Scalable Architectures for Parallel Computation of Similarity Measures
【24h】

Low-Complexity Scalable Architectures for Parallel Computation of Similarity Measures

机译:低复杂性可扩展架构,用于平行计算相似度措施

获取原文
获取原文并翻译 | 示例

摘要

Processor array architectures have been employed, as an accelerator, to compute similarity distance found in a variety of data mining algorithms. However, most of the proposed architectures in the existing literature are designed in an ad hoc manner without taking into consideration the size and dimensionality of the datasets. Furthermore, data dependencies have not been analyzed, and often, only one design choice is considered for the scheduling and mapping of computational tasks. In this work, we present a systematic methodology to design scalable and area-efficient linear (1-D) processor arrays for the computation of similarity distance matrices. Six possible design options are obtained and analyzed in terms of area and time complexities. The obtained architectures provide us with the flexibility to choose the one that meets hardware constraints for a specific problem size. Comparisons with the previously reported architectures demonstrate that one of the proposed architectures achieves less area and area-delay product besides its scalability to high-dimensional data.
机译:处理器阵列架构已被使用,作为加速器,以计算各种数据挖掘算法中的相似距离。然而,现有文献中的大多数拟议架构都以临时方式设计,而不考虑数据集的尺寸和维度。此外,尚未分析数据依赖性,并且通常只考虑计算任务的调度和映射一个设计选择。在这项工作中,我们提出了一种系统的系统方法,可以设计可扩展和区域有效的线性(1-D)处理器阵列,用于计算相似距离矩阵。在面积和时间复杂性方面获得并分析了六种可能的设计选择。所获得的架构为我们提供了灵活性,可以灵活地选择满足特定问题大小的硬件约束的灵活性。与先前报告的体系结构的比较表明,除了对高维数据的可扩展性之外,其中一个拟议的架构实现了较少的区域和区域延迟产品。

著录项

  • 来源
    《Scientific programming》 |2019年第1期|3185137.1-3185137.11|共11页
  • 作者单位

    Princess Sumaya Univ Technol Dept Comp Engn Amman Jordan;

    Univ Victoria Dept Elect & Comp Engn Victoria BC Canada;

    Prince Sattam Bin Abdulaziz Univ Dept Comp Engn Coll Comp Engn & Sci Al Kharj 11942 Saudi Arabia|Elect Res Inst Dept Microelect Cairo 11622 Egypt;

    Univ Victoria Dept Elect & Comp Engn Victoria BC Canada;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号