...
首页> 外文期刊>The Science of the Total Environment >Variability of subsurface structure and infiltration hydrology among surface coal mine valley fills
【24h】

Variability of subsurface structure and infiltration hydrology among surface coal mine valley fills

机译:地表煤矿谷填充地下结构和渗透水文的变异性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Surface coal mining alters landscapes including creating waste-rock fills or dumps. In Appalachia USA, mines fill valleys with waste rock, constructing valley fills that affect water quality and aquatic ecology downstream. Total dissolved solids (TDS) in mine effluent are elevated from exposure of mineral surfaces to weathering. Understanding TDS variability requires understanding valley fill internal structure and its effect on hydrology, yet prior studies focused on point measurements or did not address patterns among fills. Here we investigated subsurface structure and hydrologic flowpaths in two dimensions within four valley fills using electrical resistivity imaging (ERI). We used artificial rainfall to investigate the location and transit time of preferential flowpaths through the fills. We corroborated our ERI interpretations using borehole logs, downhole video, and shallow soil excavation. ERI results indicated variability in substrate type and widespread presence of preferential flowpaths. We estimated an average preferential flowpath vertical length of 6.6 m, average transit time of water along the flowpath of 1.4 h, and average minimum water velocity of 5.1 m/h (0.14 cm/s). These rates are higher than typical for undisturbed lands, and resemble highly preferential flow in karst terrain. ERI successfully distinguished fills using conventional loose-dump construction from experimental controlled-material compacted-lift construction. Conventional fills exhibited finer particles that retain water at the surface, with larger rocks and larger voids at depth. Conventional fills had greater ranges of subsurface resistivity (i.e. substrate types) and greater interior accumulation of water during artificial rainfall, indicating more quick/deep preferential infiltration flowpaths. We show experimental construction significantly alters hydrologic response, which in combination with use of low-TDS waste rock, may affect downstream water quality relative to conventional loose-dump methods. Our soil boring and pits corroborated ERI interpretation, thus demonstrating ERI to be a robust non-invasive technique that provides reliable information on valley fill structure and hydrology. (c) 2018 Elsevier B.V. All rights reserved.
机译:地表煤矿改变了景观,包括创建废物岩石填充或垃圾箱。在Appalachia美国,矿山用废岩填充山谷,建造影响水质和下游水生生态的山谷填充物。矿井流出物中的总溶解固体(TDS)升高,从矿物表面暴露于风化。了解TDS可变性需要了解谷填充内部结构及其对水文的影响,但事先研究专注于点测量或没有填充中的解决模式。在这里,我们使用电阻率成像(ERI)调查了四个谷填充内的两个尺寸的地下结构和水文流动路径。我们使用人工降雨来研究通过填充的优先流动路径的位置和过境时间。我们使用钻孔日志,井下视频和浅层土壤挖掘来证实了我们的ERI解释。 ERI结果表明基材类型的可变性和优先流动路径的广泛存在。我们估计平均优先流路垂直长度为6.6米,沿流动路径为1.4小时,平均最小水速度为5.1米/小时(0.14厘米/秒)。这些速率高于典型的未受干扰的土地,在喀斯特地形中类似于高度优先流动。 ERI使用实验控制材料压实升降型施工,使用传统的卸料施工成功分辨填充。常规填充表现出较好的颗粒,其在表面处保留水,具有较大的岩石和深度较大的空隙。常规填料具有更大的地下电阻率(即衬底类型)和人工降雨期间水的更大内部积累,表明更快/深度优先渗透流动路径。我们表现​​出实验结构显着改变了水文反应,它与低TDS废弃物的使用相结合,可能影响下游水质相对于传统的卸料方法。我们的土壤镗孔和坑被证实的ERI解释,从而证明ERI是一种强大的非侵入性技术,提供有关谷填充结构和水文的可靠信息。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号