...
首页> 外文期刊>Hydrological Processes >Electrical resistivity imaging of hydrologic flow through surface coal mine valley fills with comparison to other landforms
【24h】

Electrical resistivity imaging of hydrologic flow through surface coal mine valley fills with comparison to other landforms

机译:与其他地形相比,流经地表煤矿山谷填充物的水文流动的电阻率成像

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Surface coal mining has altered land cover, near-surface geologic structure, and hydrologic processes of large areas in central Appalachia, USA. These alterations are associated with changes in water quality such as elevated total-dissolved solids, which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent streams is a function of fill construction methods, materials, and age; yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of conducting traditional hydrologic studies in mined landscapes. We used electrical resistivity imaging (ERI) to visualize the subsurface geologic structure and hydrologic flow paths within a valley fill. ERI is a noninvasive geophysical technique that maps spatiotemporal changes in resistivity of the subsurface. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill. Results indicate that ERI can be used to identify subsurface geologic structure and track advancing wetting fronts or preferential flow paths. Our results suggest that the upper portion of the fill contains significant fines, whereas the deeper profile is primarily large rocks and void spaces. Water tended to pond on the surface of compacted areas until it reached preferential flow paths, where it appeared to infiltrate quickly down to >15m depth in 75min. ERI applications can improve understanding of how fill construction techniques influence subsurface water movement, and in turn may aid in the development of valley fill construction methods to reduce water quality effects.
机译:露天煤矿开采改变了美国中部阿巴拉契亚州大片土地的覆盖,近地表地质结构和水文过程。这些变化与水质的变化有关,例如总溶解固体含量的升高,通常通过其替代物比电导(SC)进行测量。山谷填埋场污水流的SC取决于填埋场的建造方法,材料和使用年限。然而,由于难以在矿区进行传统的水文研究,将这些变量与水质相关的水文研究稀疏。我们使用电阻率成像(ERI)可视化了山谷填充物中的地下地质结构和水文流动路径。 ERI是一种非侵入性的地球物理技术,可绘制地下电阻率的时空变化图。我们将ERI与人工降雨实验结合使用,以跟踪渗入水流经山谷填充物的过程。结果表明,ERI可用于识别地下地质结构并跟踪前进的润湿锋面或优先流动路径。我们的结果表明,填充物的上部包含大量细屑,而较深的轮廓主要是大岩石和空隙空间。水倾向于堆积在压实区域的表面上,直到到达优先流动路径为止,在75分钟内似乎迅速渗入到> 15m的深度。 ERI应用程序可以增进对填充工程技术如何影响地下水运动的理解,进而可以帮助开发山谷填充工程方法以降低水质影响。

著录项

  • 来源
    《Hydrological Processes》 |2017年第12期|2244-2260|共17页
  • 作者单位

    Virginia Polytech & State Univ, Charles E Via Jr Dept Civil & Environm Engn, 220-D Patton Hall, Blacksburg, VA 24061 USA;

    Virginia Polytech & State Univ, Dept Geosci, 3409-A Derring Hall, Blacksburg, VA 24061 USA;

    Virginia Polytech & State Univ, Dept Crop & Soil Environm Sci, 363 Smyth Hall, Blacksburg, VA 24061 USA;

    Virginia Polytech & State Univ, Charles E Via Jr Dept Civil & Environm Engn, 220-D Patton Hall, Blacksburg, VA 24061 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    conductivity; geophysical inverse modeling; preferential flow; stormflow;

    机译:电导率;地球物理反演;优先流;暴雨流;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号