首页> 外文期刊>The Science of the Total Environment >Variability of subsurface structure and infiltration hydrology among surface coal mine valley fills
【24h】

Variability of subsurface structure and infiltration hydrology among surface coal mine valley fills

机译:表层煤矿山谷填充物地下结构的变异性和渗透水文学

获取原文
获取原文并翻译 | 示例
           

摘要

Surface coal mining alters landscapes including creating waste-rock fills or dumps. In Appalachia USA, mines fill valleys with waste rock, constructing valley fills that affect water quality and aquatic ecology downstream. Total dissolved solids (TDS) in mine effluent are elevated from exposure of mineral surfaces to weathering. Understanding TDS variability requires understanding valley fill internal structure and its effect on hydrology, yet prior studies focused on point measurements or did not address patterns among fills. Here we investigated subsurface structure and hydrologic flowpaths in two dimensions within four valley fills using electrical resistivity imaging (ERI). We used artificial rainfall to investigate the location and transit time of preferential flowpaths through the fills. We corroborated our ERI interpretations using borehole logs, downhole video, and shallow soil excavation. ERI results indicated variability in substrate type and widespread presence of preferential flowpaths. We estimated an average preferential flowpath vertical length of 6.6 m, average transit time of water along the flowpath of 1.4 h, and average minimum water velocity of 5.1 m/h (0.14 cm/s). These rates are higher than typical for undisturbed lands, and resemble highly preferential flow in karst terrain. ERI successfully distinguished fills using conventional loose-dump construction from experimental controlled-material compacted-lift construction. Conventional fills exhibited finer particles that retain water at the surface, with larger rocks and larger voids at depth. Conventional fills had greater ranges of subsurface resistivity (i.e. substrate types) and greater interior accumulation of water during artificial rainfall, indicating more quick/deep preferential infiltration flowpaths. We show experimental construction significantly alters hydrologic response, which in combination with use of low-TDS waste rock, may affect downstream water quality relative to conventional loose-dump methods. Our soil boring and pits corroborated ERI interpretation, thus demonstrating ERI to be a robust non-invasive technique that provides reliable information on valley fill structure and hydrology. (c) 2018 Elsevier B.V. All rights reserved.
机译:露天煤矿开采改变了景观,包括创建了废石料填埋场或垃圾场。在美国阿帕拉契亚州,矿山用废石填满山谷,建造影响下游水质和水生生态的山谷填土。由于矿物表面暴露于风化,矿山废水中的总溶解固体(TDS)升高。了解TDS的变异性需要了解河谷填充物的内部结构及其对水文的影响,但先前的研究集中于点测量或未解决填充物之间的模式。在这里,我们使用电阻率成像(ERI)研究了四个山谷填充物中二维的地下结构和水文流动路径。我们使用人工降雨来研究优先流动路径通过填充物的位置和通过时间。我们使用井眼测井,井下视频和浅层土壤开挖证实了我们对ERI的解释。 ERI结果表明底物类型的可变性和优先流动路径的广泛存在。我们估计平均优先流径垂直长度为6.6 m,水沿流径的平均通过时间为1.4 h,平均最小水流速度为5.1 m / h(0.14 cm / s)。这些比率高于未受干扰土地的典型比率,类似于喀斯特地形中的高度优先流动。 ERI成功地将传统的松散卸料结构与实验控制材料压实举升结构区分开来。常规的填充物表现出更细的颗粒,这些颗粒将水保留在地表,具有更大的岩石和更大的深度空隙。常规填充物在人工降雨过程中具有较大的地下电阻率范围(即基底类型)和较大的内部水积聚,这表明较快/较深的优先渗透流径。我们显示,实验施工显着改变了水文响应,与使用低TDS废石相结合,相对于传统的松散倾倒方法可能会影响下游水质。我们的土壤钻孔和坑坑证实了ERI的解释,因此证明了ERI是一种强大的非侵入性技术,可提供有关河谷填充物结构和水文学的可靠信息。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号