首页> 外文期刊>The Science of the Total Environment >Impacts of agricultural land use change on soil aggregate stability and physical protection of organic C
【24h】

Impacts of agricultural land use change on soil aggregate stability and physical protection of organic C

机译:农业土地利用变化对土壤团聚体稳定性和有机碳物理保护的影响

获取原文
获取原文并翻译 | 示例

摘要

Soil aggregate stability and soil organic carbon (SOC) physical sequestration is essential to regulation of anthropogenic climate change. However, relative knowledge remains elusive. The total SOC stock, aggregate stability, capacity of physically protected C, structure of macroaggregates and Al/Fe oxides under rice-wheat rotation (RW), rice-vegetable rotation (RV) and afforested land (AL) were analysed. We chose 1-2 mm macroaggregates for low-temperature ashing (LTA) treatment to mimic natural oxidation to assess the capacity of physically protected C. Using scanning electron microscopy, the N adsorption method, and energy dispersive spectroscopy, we explored the internal structure of macroaggregates under different land use types. All land use types could physically protect over 50% of SOC. AL showed the strongest capacity of C sequestration, followed by RW, which preserved 67.1% and 59.6% of SOC, respectively. After 5 h of LTA treatment, the amount of SOC removed from the macropores in cropland (RW and RV) was higher than that in AL In micropores with further oxidation, AL and RW both lost only 5% of SOC. Fe oxides were more correlated with C dynamics than Al oxides. Free Fe oxides were associated with the easily oxidised organic matter. Soil aggregate stability significantly correlated with Al/Fe oxides (p < 0.05). The RW and AL had a greater soil aggregate stability than the RV owing to the relatively higher content of Al/Fe oxides. In conclusion, the conversion of RW to RV reduced the mechanical stability of soil aggregates and the capacity of C physical sequestration, while the conversion of RW to AL increased these two properties. Land use change affected C physical sequestration mainly via changes in surface area, pore development and the content of Fe oxides in macroaggregates.
机译:土壤团聚体的稳定性和土壤有机碳的固存对于调节人为气候变化至关重要。但是,相对的知识仍然难以捉摸。分析了稻麦轮作(RW),水稻蔬菜轮作(RV)和绿化土地(AL)下的SOC总量,骨料稳定性,物理保护碳的容量,大骨料和Al / Fe氧化物的结构。我们选择了1-2 mm的大型骨料进行低温灰化(LTA)处理,以模拟自然氧化,以评估物理保护的C的能力。使用扫描电子显微镜,N吸附法和能量色散光谱法,研究了C的内部结构。不同土地利用类型下的宏观总量。所有土地使用类型都可以物理保护超过50%的SOC。 AL表现出最强的C隔离能力,其次是RW,分别保留SOC的67.1%和59.6%。 LTA处理5小时后,从农田(RW和RV)的大孔中去除的SOC量比AL中的高。在进一步氧化的微孔中,AL和RW都仅损失5%的SOC。铁氧化物比铝氧化物与C动力学的相关性更高。游离的铁氧化物与易氧化的有机物有关。土壤团聚体稳定性与Al / Fe氧化物显着相关(p <0.05)。由于铝/铁氧化物含量较高,RW和AL具有比RV高的土壤团聚体稳定性。总之,RW向RV的转化降低了土壤团聚体的机械稳定性和碳固存的能力,而RW向AL的转化则提高了这两个特性。土地利用变化主要通过表面积,孔隙的发展以及大型骨料中氧化铁的含量的变化影响碳的物理固存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号