首页> 外文期刊>The Science of the Total Environment >Uncertainty analysis in source apportionment of heavy metals in road dust based on positive matrix factorization model and geographic information system
【24h】

Uncertainty analysis in source apportionment of heavy metals in road dust based on positive matrix factorization model and geographic information system

机译:基于正矩阵分解模型和地理信息系统的道路扬尘中重金属源解析不确定度分析

获取原文
获取原文并翻译 | 示例

摘要

Based on 36 road dust samples from an urbanized area of Beijing in September 2016, the information about sources (types, proportions, and intensity in spatial) of heavy metals and uncertainties were analyzed using positive matrix factorization (PMF) model, bootstrap (BS), geographic information system (GIS) and Kriging. The mean concentration of most heavy metals was higher than the corresponding background, and mean concentration of Cd was six times of its background value. Types and proportions of four sources were identified: fuel combustion (33.64%), vehicle emission (25.46%), manufacture and use of metallic substances (22.63%), and use of pesticides, fertilizers, and medical devices (18.26%). The intensity of vehicle emission and the use of pesticides, fertilizers, and medical devices were more homogeneous in spatial (extents were 1.285 and 0.955), while intensity of fuel combustion and the manufacture and use of metallic substances varied largely (extents were 4.172 and 5.518). Uncertainty analysis contained three aspects: goodness of fit, bias and variability in the PMF solution, and impact of input data size. Goodness of fit was assessed by coefficient of determination (R-2) of predicted and measured values, and R-2 of most species were higher than 0.56. Influenced by an outlier, R-2 of Ni decreased from 0.59 to 0.11. Result of bootstrap (BS) showed good robust of this four-factor configuration in PMF model, and contributions of base run of factors to most species were contained in the small interquartile range and close to median values of bootstrap. Size of input data also had influence on results of PMF model. Residuals changed largely with the increase of number of site, it varied at first and then kept stable after number of site reached 70. (C) 2018 Elsevier B.V. All rights reserved.
机译:基于2016年9月北京市区的36个道路扬尘样本,使用正矩阵分解(PMF)模型,自举(BS)分析有关重金属的来源(类型,比例和空间强度)和不确定性的信息,地理信息系统(GIS)和Kriging。大多数重金属的平均浓度高于相应的背景,镉的平均浓度是其背景值的六倍。确定了四种来源的类型和比例:燃料燃烧(33.64%),车辆排放(25.46%),金属物质的制造和使用(22.63%)以及农药,化肥和医疗器械的使用(18.26%)。在空间上,车辆排放的强度以及使用农药,化肥和医疗设备的程度更为均匀(范围为1.285和0.955),而燃料燃烧的强度以及金属物质的制造和使用变化很大(范围为4.172和5.518) )。不确定性分析包含三个方面:PMF解决方案的拟合优度,偏差和可变性以及输入数据大小的影响。通过预测值和测量值的确定系数(R-2)评估拟合优度,大多数物种的R-2高于0.56。受离群值的影响,Ni的R-2从0.59降低至0.11。引导程序(BS)的结果在PMF模型中显示出对这种四因素配置的良好鲁棒性,并且该因素对大多数物种的基础运行贡献都位于较小的四分位数范围内,并且接近引导程序的中值。输入数据的大小也对PMF模型的结果产生影响。残留物随着站点数量的增加而发生很大变化,首先变化,然后在站点数量达到70之后保持稳定。(C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《The Science of the Total Environment》 |2019年第20期|27-39|共13页
  • 作者单位

    Beijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, 19 Xinjiekouwai St, Beijing 100875, Peoples R China;

    Beijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, 19 Xinjiekouwai St, Beijing 100875, Peoples R China;

    Beijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, 19 Xinjiekouwai St, Beijing 100875, Peoples R China;

    Beijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, 19 Xinjiekouwai St, Beijing 100875, Peoples R China;

    Beijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, 19 Xinjiekouwai St, Beijing 100875, Peoples R China;

    Beijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, 19 Xinjiekouwai St, Beijing 100875, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Road dust; Heavy metals; Source apportionment; Uncertainty; Positive matrix factorization;

    机译:道路扬尘;重金属;源分配;不确定度;正矩阵分解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号