首页> 外文期刊>The Science of the Total Environment >Factors affecting the spatial and temporal distribution of E. coli in intertidal estuarine sediments
【24h】

Factors affecting the spatial and temporal distribution of E. coli in intertidal estuarine sediments

机译:影响潮间带河口沉积物中大肠杆菌时空分布的因素

获取原文
获取原文并翻译 | 示例

摘要

Microbiological water quality monitoring of bathing waters does not account for faecal indicator organisms in sediments. Intertidal deposits are a significant reservoir of FIOs and this indicates there is a substantial risk to bathers through direct contact with the sediment, or through the resuspension of bacteria to the water column. Recent modelling efforts include sediment as a secondary source of contamination, however, little is known about the driving factors behind spatial and temporal variation in FIO abundance. E. coli abundance, in conjunction with a wide range of measured variables, was used to construct models to explain E. coli abundance in intertidal sediments in two Scottish estuaries. E. coli concentrations up to 6 log(10) CFU 100 g dry wt(-1) were observed, with optimal models accounting for E. coli variation up to an adjusted R-2 of 0.66. Introducing more complex models resulted in overfitting of models, detrimentally affected the transferability of models between datasets. Salinity was the most important single variable, with season, pH, colloidal carbohydrates, organic content, bulk density and maximum air temperature also featuring in optimal models. Transfer of models, using only lower cost variables, between systems explained an average deviance of 42%. This study demonstrates the potential for cost-effective sediment characteristic monitoring to contribute to FIO fate and transport modelling and consequently the risk assessment of bathing water safety. (C) 2019 Elsevier B.V. All rights reserved.
机译:沐浴水的微生物水质监测不能解释沉积物中的粪便指示生物。潮间带的沉积物是重要的FIO储集层,这表明沐浴者通过直接与沉积物接触或将细菌重新悬浮到水柱中而存在很大的风险。最近的建模工作包括将沉积物作为次要污染源,但是,对于FIO丰度的时空变化背后的驱动因素知之甚少。大肠杆菌丰度,结合广泛的测量变量,被用于构建解释两个苏格兰河口潮间带沉积物中大肠杆菌丰度的模型。观察到大肠杆菌浓度高达6 log(10)CFU 100克干wt(-1),最佳模型解释了高达0.66的调整R-2的大肠杆菌变异。引入更复杂的模型会导致模型过度拟合,从而不利于模型在数据集之间的可传递性。盐度是最重要的单个变量,最佳模型还包括季节,pH,胶体碳水化合物,有机物含量,堆积密度和最高气温。在系统之间仅使用成本较低的变量进行模型转换就可以得出平均偏差为42%。这项研究表明,具有成本效益的沉积物特征监测有可能为FIO的命运和运输模型做出贡献,并因此对沐浴水安全性进行风险评估。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《The Science of the Total Environment》 |2019年第15期|155-167|共13页
  • 作者单位

    Univ St Andrews, Sch Biol, Scottish Oceans Inst, Sediment Ecol Res Grp, St Andrews KY16 8LB, Fife, Scotland;

    Univ St Andrews, Sch Biol, Scottish Oceans Inst, Sediment Ecol Res Grp, St Andrews KY16 8LB, Fife, Scotland;

    Univ St Andrews, Scottish Oceans Inst, Sch Biol, St Andrews KY16 8LB, Fife, Scotland;

    Univ St Andrews, Sch Biol, Scottish Oceans Inst, Sediment Ecol Res Grp, St Andrews KY16 8LB, Fife, Scotland;

    James Hutton Inst, Environm & Biol Sci Grp, Aberdeen AB15 8QH, Scotland;

    James Hutton Inst, Environm & Biol Sci Grp, Aberdeen AB15 8QH, Scotland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    FIO; Estuaries; Pathogens; Bathing water quality; Sediments;

    机译:FIO;河口;病原体;沐浴水质;沉积物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号