首页> 外文期刊>Science, Measurement & Technology, IET >Robust meter placement for active distribution state estimation using a new multi-objective optimisation model
【24h】

Robust meter placement for active distribution state estimation using a new multi-objective optimisation model

机译:使用新的多目标优化模型进行主动分布状态估计的稳健仪表放置

获取原文
获取原文并翻译 | 示例

摘要

In this study, a new multi-objective optimisation model is developed to deploy phasor measurement units (PMUs) and intelligent electronic devices (IEDs) optimally in an active distribution network for state estimation. Three objective functions are considered in this optimisation problem such as the total cost of PMUs and IEDs, and the root mean square value of state estimation error. Since conflicting objectives are considered; to find the optimal locations of the devices, the meter placement problem is developed in a multi-objective framework to get compromised solution. The best compromised solution is obtained using multi-objective hybrid particle swarm optimisation (PSO)-Krill Herd algorithm (KHA). Furthermore, the reliability of the proposed meter placement technique is tested under load and generators' output variations. All distributed generations (DGs) are considered as wind generators and the output of each DG is modelled using Weibull distribution function. The proposed algorithm is tested on IEEE 69-bus system as well as on a practical Indian 85-bus system. The obtained results have been compared with traditional PSO, KHA and also with well known non-dominated sorting genetic algorithm.
机译:在这项研究中,开发了一种新的多目标优化模型,以在状态分布估计的主动配电网络中最佳地部署相量测量单元(PMU)和智能电子设备(IED)。在此优化问题中考虑了三个目标函数,例如PMU和IED的总成本以及状态估计误差的均方根值。由于考虑了相互矛盾的目标;为了找到设备的最佳位置,在多目标框架中开发了电表放置问题,以获得折衷的解决方案。使用多目标混合粒子群优化(PSO)-Krill Herd算法(KHA)获得最佳折衷解决方案。此外,在负载和发电机输出变化的情况下,对所提出的仪表放置技术的可靠性进行了测试。将所有分布式发电(DG)视为风力发电机,并使用Weibull分布函数对每个DG的输出进行建模。所提出的算法已在IEEE 69总线系统以及实际的印度85总线系统上进行了测试。将获得的结果与传统的PSO,KHA以及众所周知的非支配排序遗传算法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号