首页> 外文期刊>Science of Computer Programming >Counterexample guided inductive optimization based on satisfiability modulo theories
【24h】

Counterexample guided inductive optimization based on satisfiability modulo theories

机译:基于可取模理论的反例引导归纳优化

获取原文
获取原文并翻译 | 示例

摘要

This paper describes three variants of a counterexample guided inductive optimization (CEGIO) approach based on Satisfiability Modulo Theories (SMT) solvers. In particular, CEGIO relies on iterative executions to constrain a verification procedure, in order to perform inductive generalization, based on counterexamples extracted from SMT solvers. CEGIO is able to successfully optimize a wide range of functions, including non-linear and non-convex optimization problems based on SMT solvers, in which data provided by counterexamples are employed to guide the verification engine, thus reducing the optimization domain. The present algorithms are evaluated using a large set of benchmarks typically employed for evaluating optimization techniques. Experimental results show the efficiency and effectiveness of the proposed algorithms, which find the optimal solution in all evaluated benchmarks, while traditional techniques are usually trapped by local minima.
机译:本文介绍了基于可满足性模理论(SMT)求解器的反例引导归纳优化(CEGIO)方法的三种变体。特别是,CEGIO基于从SMT求解器提取的反例,依靠迭代执行来约束验证过程,以执行归纳概括。 CEGIO能够成功地优化各种功能,包括基于SMT求解器的非线性和非凸优化问题,其中使用反例提供的数据来指导验证引擎,从而减少了优化范围。使用通常用于评估优化技术的大量基准来评估本算法。实验结果表明了所提算法的效率和有效性,可以在所有评估基准中找到最佳解决方案,而传统技术通常会陷入局部极小值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号