首页> 外文期刊>Sampling theory in signal and image processing >Approximately dual frames in Hilbert spaces and applications to Gabor frames
【24h】

Approximately dual frames in Hilbert spaces and applications to Gabor frames

机译:希尔伯特空间中的大约双框架及其在Gabor框架中的应用

获取原文
获取原文并翻译 | 示例

摘要

Approximately dual frames are studied in the Hilbert space setting. Approximate duals are easier to construct than classical dual frames, and can be tailored to yield almost perfect reconstruction. Bounds on the deviation from perfect reconstruction are obtained for approximately dual frames constructed via perturbation theory. An alternative bound is derived for the rich class of Gabor frames, by using the Walnut representation of the frame operator to estimate the deviation from equality in the duality conditions. To illustrate these results, we construct explicit approximate duals of Gabor frames generated by the Gaussian; these approximate duals yield almost perfect reconstruction. Surprisingly, the method applies also to certain Gabor frames that are far from being tight.
机译:在希尔伯特空间设置中研究了大约双帧。近似对偶比经典对偶帧更容易构建,并且可以进行定制以产生几乎完美的重构。通过摄动理论构造的近似双帧获得了与完美重构偏差的界线。通过使用帧算子的Walnut表示来估计对偶条件下与等式的偏差,从而为丰富的Gabor帧类派生出替代边界。为了说明这些结果,我们构造了由高斯生成的Gabor框架的显式近似对偶。这些近似的对偶产生几乎完美的重建。令人惊讶地,该方法还适用于远非紧密的某些Gabor框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号