首页> 外文期刊>Running algorithm of simulator of wireless distributed measurement-control system with rule based processing >Development of LiDAR Data Classification Algorithms based on Parallel Computing using nVidia CUDA Technology
【24h】

Development of LiDAR Data Classification Algorithms based on Parallel Computing using nVidia CUDA Technology

机译:使用nVidia CUDA技术开发基于并行计算的LiDAR数据分类算法

获取原文
获取原文并翻译 | 示例

摘要

The paper presents an innovative data classification approach based on parallel computing performed on a GPGPU (General-Purpose Graphics Processing Unit). The results shown in this paper were obtained in the course of a European Commission-funded project: "Research on large-scale storage, sharing and processing of spatial laser data", which concentrated on LIDAR data storage and sharing via databases and the application of parallel computing using nVidia CUDA technology. The paper describes the general requirements of nVidia CUDA technology application in massive LiDAR data processing. The studied point cloud data structure fulfills these requirements in most potential cases. A unique organization of the processing procedure is necessary. An innovative approach based on rapid parallel computing and analysis of each point's normal vector to examine point cloud geometry within a classification process is described in this paper. The presented algorithm called LiMON classifies points into basic classes defined in LAS format: ground, buildings, vegetation, low points. The specific stages of the classification process are presented. The efficiency and correctness of LiMON were compared with popular program called Terrascan. The correctness of the results was tested in quantitive and qualitative ways. The test of quality was executed on specific objects, that are usually difficult for classification algorithms. The quantitive test used various environment types: forest, agricultural area, village, town. Reference clouds were obtained via two different methods: (1) automatic classification using Terrascan, (2) manually corrected clouds classified by Terrascan. The following coefficients for quantitive testing of classification correctness were calculated: Type 1 Error, Type 2 Error, Kappa, Total Error. The results shown in the paper present the use of parallel computing on a GPGPU as an attractive route for point cloud data processing.
机译:本文提出了一种创新的数据分类方法,该方法基于在GPGPU(通用图形处理单元)上执行的并行计算。本文显示的结果是在欧洲委员会资助的项目“空间激光数据的大规模存储,共享和处理研究”的过程中获得的,该项目专注于LIDAR数据通过数据库的存储和共享以及应用使用nVidia CUDA技术进行并行计算。本文介绍了nVidia CUDA技术在海量LiDAR数据处理中的一般要求。研究的点云数据结构在大多数潜在情况下都满足了这些要求。加工程序的唯一组织是必要的。本文介绍了一种基于快速并行计算和对每个点的法向矢量的分析以在分类过程中检查点云几何形状的创新方法。提出的称为LiMON的算法将点分为以LAS格式定义的基本类别:地面,建筑物,植被,低点。介绍了分类过程的特定阶段。将LiMON的效率和正确性与称为Terrascan的流行程序进行了比较。以定量和定性的方式测试了结果的正确性。质量测试是在特定对象上执行的,这些通常对于分类算法来说是困难的。定量测试使用了各种环境类型:森林,农业地区,村庄,城镇。参考云是通过两种不同的方法获得的:(1)使用Terrascan进行自动分类,(2)通过Terrascan进行人工校正的云。计算了用于分类正确性定量测试的以下系数:类型1错误,类型2错误,Kappa,总错误。本文显示的结果展示了在GPGPU上使用并行计算作为点云数据处理的诱人途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号