首页> 外文期刊>Robotica >Mobile Robotic Sensors for Environmental Monitoring using Gaussian Markov Random Field
【24h】

Mobile Robotic Sensors for Environmental Monitoring using Gaussian Markov Random Field

机译:高斯马尔可夫随机场环境监测的移动机器人传感器

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the issue of monitoring spatial environmental phenomena of interest utilizing information collected by a network of mobile, wireless, and noisy sensors that can take discrete measurements as they navigate through the environment. It is proposed to employ Gaussian Markov random field (GMRF) represented on an irregular discrete lattice by using the stochastic partial differential equations method to model the physical spatial field. It then derives a GMRF-based approach to effectively predict the field at unmeasured locations, given available observations, in both centralized and distributed manners. Furthermore, a novel but efficient optimality criterion is then proposed to design centralized and distributed adaptive sampling strategies for the mobile robotic sensors to find the most informative sampling paths in taking future measurements. By taking advantage of conditional independence property in the GMRF, the adaptive sampling optimization problem is proven to be resolved in a deterministic time. The effectiveness of the proposed approach is compared and demonstrated using pre-published data sets with appealing results.
机译:本文涉及利用由移动,无线和嘈杂传感器网络收集的信息监控空间环境现象的问题,这些信息可以采取离散测量的浏览环境。通过使用随机部分微分方程方法来模拟物理空间场来利用在不规则离散格子上的高斯Markov随机场(GMRF)采用不规则的离散格。然后,它衍生基于GMRF的方法,以有效地预测在集中式和分布式方式中给定可用观察的未测量位置处的字段。此外,提出了一种新颖但有效的最优性标准,为移动机器人传感器设计集中和分布的自适应采样策略,以找到在未来测量中的最佳采样路径。通过利用GMRF中的条件独立性,证明在确定性时间内得到解决的自适应采样优化问题。使用具有吸引人的结果的预发布的数据集进行比较和演示拟议方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号