首页> 外文期刊>Risk analysis >Modeling Individual Cell Lag Time Distributions for Listeria monocytogenes
【24h】

Modeling Individual Cell Lag Time Distributions for Listeria monocytogenes

机译:模拟单核细胞增生李斯特菌的单个细胞滞后时间分布

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The food industry faces two paradoxical demands: on the one hand, foods need to be mi-crobiologically safe for consumption and on the other hand, consumers want fresh, minimally processed foods. To meet these demands, more insight into the mechanisms of microbial growth is needed, which includes, among others, the microbial lag phase. This is the time needed by bacterial cells to adapt to a new environment (for example, after food product contamination) before starting an exponential growth regime. Since food products are often contaminated with low amounts of pathogenic microorganisms, it is important to know the distribution of these individual cell lag times to make accurate predictions concerning food safety. More precisely, cells with the shortest lag times (i.e., appearing in the left tail of the distribution) are largely decisive for the outgrowth of the population. In this study, an integrated modeling approach is proposed and applied to an existing data set of individual cell lag time measurements of Listeria monocytogenes. In a first step, a logistic modeling approach is applied to predict the fraction of zero-lag cells (which start growing immediately) as a function of temperature, pH, and water activity. For the nonzero-lag cells, the mean and variance of the lag time distribution are modeled with a hyperbolic-type model structure. This mean and variance allow identification of the parameters of a two-parameter Weibull distribution, representing the nonzero-lag cell lag time distribution. The integration of the developed models allows prediction of a global distribution of individual cell lag times for any combination of environmental conditions in the interpolation domain of the original temperature, pH, and water activity settings. The global fitting quality of the model is quantified using several measures indicating that the model gives accurate predictions, erring slightly on the fail-safe side when predicting the shortest lag times.
机译:食品工业面临两个矛盾的要求:一方面,食品在食用时必须具有微生物学上的安全性;另一方面,消费者则需要新鲜的,加工程度最低的食品。为了满足这些需求,需要对微生物生长的机制有更多的了解,其中包括微生物滞后阶段。这是细菌细胞在开始指数增长方案之前适应新环境(例如,食品污染之后)所需的时间。由于食品通常被少量的病原微生物污染,因此重要的是要知道这些细胞滞后时间的分布,以便对食品安全做出准确的预测。更准确地说,滞后时间最短的细胞(即出现在分布的左尾)对种群的增长起着决定性作用。在这项研究中,提出了一种集成的建模方法,并将其应用于单核细胞增生李斯特菌的单个细胞滞后时间测量的现有数据集。第一步,采用逻辑模型方法预测零滞后细胞(立即开始生长)的比例随温度,pH和水活度的变化。对于非零滞后单元,使用双曲线型模型结构对滞后时间分布的均值和方差进行建模。该均值和方差允许识别代表非零滞后单元滞后时间分布的两参数威布尔分布的参数。所开发模型的集成可以预测原始温度,pH和水分活度设置的插值域中环境条件的任何组合的单个细胞滞后时间的全局分布。使用多种度量来量化模型的整体拟合质量,这些度量表明模型给出了准确的预测,而在预测最短的延迟时间时,在故障保护方面会略有错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号