...
首页> 外文期刊>Review of Modern Physics >Fractal structures in nonlinear dynamics
【24h】

Fractal structures in nonlinear dynamics

机译:非线性动力学中的分形结构

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In addition to the striking beauty inherent in their complex nature, fractals have become a fundamental ingredient of nonlinear dynamics and chaos theory since they were defined in the 1970s. Moreover, fractals have been detected in nature and in most fields of science, with even a certain influence in the arts. Fractal structures appear naturally in dynamical systems, in particular associated with the phase space. The analysis of these structures is especially useful for obtaining information about the future behavior of complex systems, since they provide fundamental knowledge about the relation between these systems and uncertainty and indeterminism. Dynamical systems are divided into two main groups: Hamiltonian and dissipative systems. The concepts of the attractor and basin of attraction are related to dissipative systems. In the case of open Hamiltonian systems, there are no attractors, but the analogous concepts of the exit and exit basin exist. Therefore basins formed by initial conditions can be computed in both Hamiltonian and dissipative systems, some of them being smooth and some fractal. This fact has fundamental consequences for predicting the future of the system. The existence of this deterministic unpredictability, usually known as final state sensitivity, is typical of chaotic systems, and makes deterministic systems become, in practice, random processes where only a probabilistic approach is possible. The main types of fractal basin, their nature, and the numerical and experimental techniques used to obtain them from both mathematical models and real phenomena are described here, with special attention to their ubiquity in different fields of physics.
机译:自1970年代定义以来,分形除了具有复杂本质所固有的惊人之美外,还已成为非线性动力学和混沌理论的基本要素。此外,在自然界和大多数科学领域中都已经发现了分形,甚至在艺术中也有一定影响。分形结构自然出现在动力学系统中,特别是与相空间有关。这些结构的分析对于获取有关复杂系统未来行为的信息特别有用,因为它们提供了有关这些系统与不确定性和不确定性之间关系的基础知识。动力系统分为两大类:哈密顿系统和耗散系统。吸引子和吸引盆的概念与耗散系统有关。在开放的哈密顿系统中,没有吸引子,但是存在出口和出口盆地的类似概念。因此,可以在哈密顿系统和耗散系统中计算由初始条件形成的盆地,其中有些是光滑的,有些是分形的。这一事实对预测系统的未来具有根本的影响。这种确定性不可预测性(通常称为最终状态敏感度)的存在是混沌系统的典型特征,实际上使确定性系统成为随机过程,其中只能采用概率方法。本文描述了分形盆地的主要类型,性质以及用于从数学模型和实际现象中获得分形盆地的数值和实验技术,并特别注意了它们在不同物理领域的普遍性。

著录项

  • 来源
    《Review of Modern Physics》 |2009年第1期|p.333-386|共54页
  • 作者单位

    Jacobo Aguirre* Departamento de Física, Universidad Rey Juan Carlos, Tulipán s, 28933 Móstoles, Madrid, Spain and Centro de Astrobiología, CSIC-INTA, Ctra. de Ajalvir km. 4, 28850 Torrejón de Ardoz, Madrid, Spain Ricardo L. Viana† Departamento de F;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号