首页> 外文期刊>Research Synthesis Methods >A rule-based approach for automatically extracting data from systematic reviews and their updates to model the risk of conclusion change
【24h】

A rule-based approach for automatically extracting data from systematic reviews and their updates to model the risk of conclusion change

机译:基于规则的方法,用于自动从系统审核和更新中提取数据以建模结论变更风险

获取原文
获取原文并翻译 | 示例

摘要

Few data-driven approaches are available to estimate the risk of conclusion change in systematic review updates. We developed a rule-based approach to automatically extract information from reviews and updates to be used as features for modelling conclusion change risk. Rules were developed to extract relevant information from published Cochrane reviews and used to construct four features: the number of included trials and participants in the reviews, a measure based on the number of participants, and the time elapsed between the search dates. We compared the performance of random forest, decision tree, and logistic regression to predict the conclusion change risk. The performance was measured by accuracy, precision, recall, F-1-score, and area under ROC (AU-ROC). One rule was developed to extract the conclusion change information (96% accuracy, 100 reviews), one for the search date (100% accuracy, 100 reviews), one for the number of included clinical trials (100% accuracy, 100 reviews), and 22 for the number of participants (97.3% accuracy, 200 reviews). For unseen reviews, the random forest classifier showed the highest accuracy (80.8%) and AU-ROC (0.80). All classifiers showed relatively similar performance with overlapping 95% confidence interval (CI). The coverage score was shown to be the most useful feature for predicting the conclusion change risk. Features mined from Cochrane reviews and updates can estimate conclusion change risk. If data from more published reviews and updates were made accessible, data-driven methods to predict the conclusion change risk may be a feasible way to support decisions about updating reviews.
机译:很少有数据驱动的方法可用于估计系统审查更新中结论变化的风险。我们开发了一种基于规则的方法,可以自动提取来自审核和更新的信息,以用作建模结论变更风险的功能。制定了规则,以从发布的Cochrane评论中提取相关信息,并用于构建四个特征:审查中包含的试验和参与者的数量,根据参与者的数量,以及搜索日期之间经过的时间。我们比较了随机森林,决策树和逻辑回归的性能,以预测结论变化风险。性能是通过准确性,精度,召回,F-1分数和ROC(AU-ROC)的区域来衡量。开发了一个规则来提取结论变更信息(96%的准确性,100条评论),其中一个用于搜索日期(100%准确性,100条评论),其中一个临床试验(100%准确性,100条评论), 22为参与者的数量(97.3%的准确性,200条评论)。对于看不见的评论,随机森林分类器显示最高的精度(80.8%)和Au-Roc(0.80)。所有分类器都显示出相对相似的性能,重叠95%置信区间(CI)。覆盖范围被证明是预测结论变化风险的最有用的特征。从Cochrane评论和更新中开采的功能可以估算结论变更风险。如果取得了更多已发布的评论和更新的数据,可以访问数据驱动的方法,以预测结论变更风险可能是支持有关更新评审的决策的可行方式。

著录项

  • 来源
    《Research Synthesis Methods》 |2021年第2期|216-225|共10页
  • 作者单位

    Macquarie Univ Ctr Hlth Informat Australian Inst Hlth Innovat Fac Med Hlth & Human Sci Sydney NSW Australia;

    Macquarie Univ Ctr Hlth Informat Australian Inst Hlth Innovat Fac Med Hlth & Human Sci Sydney NSW Australia|Univ Sydney Sch Med Sci Fac Med & Hlth Discipline Biomed Informat & Digital Hlth Sydney NSW Australia;

    Macquarie Univ Ctr Hlth Informat Australian Inst Hlth Innovat Fac Med Hlth & Human Sci Sydney NSW Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    conclusion change; machine learning; rule#8208; based method; systematic review update;

    机译:结论变化;机器学习;基于规则的方法;系统审查更新;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号