首页> 外文期刊>Research Synthesis Methods >Modelling time-course relationships with multiple treatments: Model-based network meta-analysis for continuous summary outcomes
【24h】

Modelling time-course relationships with multiple treatments: Model-based network meta-analysis for continuous summary outcomes

机译:使用多种方法对时程关系进行建模:基于模型的网络荟萃分析可得出连续的汇总结果

获取原文
获取原文并翻译 | 示例

摘要

BackgroundModelbased metaanalysis (MBMA) is increasingly used to inform drugdevelopment decisions by synthesising results from multiple studies to estimate treatment, doseresponse, and timecourse characteristics. Network metaanalysis (NMA) is used in Health Technology Appraisals for simultaneously comparing effects of multiple treatments, to inform reimbursement decisions. Recently, a framework for doseresponse modelbased network metaanalysis (MBNMA) has been proposed that combines, often nonlinear, MBMA modelling with the statistically robust properties of NMA. Here, we aim to extend this framework to timecourse models.MethodsWe propose a Bayesian timecourse MBNMA modelling framework for continuous summary outcomes that allows for nonlinear modelling of multiparameter timecourse functions, accounts for residual correlation between observations, preserves randomisation by modelling relative effects, and allows for testing of inconsistency between direct and indirect evidence on the timecourse parameters. We demonstrate our modelling framework using an illustrative dataset of 23 trials investigating treatments for pain in osteoarthritis.ResultsOf the timecourse functions that we explored, the Emax model gave the best fit to the data and has biological plausibility. Some simplifying assumptions were needed to identify the ET50, due to few observations at early followup times. Treatment estimates were robust to the inclusion of correlations in the likelihood.ConclusionsTimecourse MBNMA provides a statistically robust framework for synthesising evidence on multiple treatments at multiple time points. The use of placebocontrolled studies in drugdevelopment means there is limited potential for inconsistency. The methods can inform drugdevelopment decisions and provide the rigour needed in the reimbursement decisionmaking process.
机译:基于背景模型的荟萃分析(MBMA)通过综合多项研究的结果以估计治疗,剂量反应和时程特征,从而越来越多地用于药物开发决策。网络元分析(NMA)用于卫生技术评估,用于同时比较多种治疗的效果,以告知报销决策。最近,已经提出了用于基于剂量反应模型的网络元分析(MBNMA)的框架,该框架将通常是非线性的MBMA模型与NMA的统计鲁棒性相结合。在此,我们旨在将该框架扩展到时间过程模型。方法我们提出了一种用于连续摘要结果的贝叶斯时间过程MBNMA建模框架,该框架允许对多参数时间过程函数进行非线性建模,考虑观测值之间的残差相关性,通过对相对影响进行建模来保留随机化并允许用于检验时间过程参数上的直接证据和间接证据之间的不一致。我们使用23个研究骨关节炎疼痛治疗的试验的说明性数据集展示了我们的建模框架。结果在我们探索的时程函数中,Emax模型最适合数据并且具有生物学上的合理性。由于在早期随访时观察很少,因此需要一些简化的假设来识别ET50。治疗估计对将相关性纳入可能性具有鲁棒性。结论Timecourse MBNMA提供了一个统计上可靠的框架,可以在多个时间点综合多种治疗的证据。在药物开发中使用安慰剂对照研究意味着出现不一致的可能性有限。这些方法可以为药物开发决策提供信息,并提供报销决策过程所需的严格性。

著录项

  • 来源
    《Research Synthesis Methods》 |2019年第2期|267-286|共20页
  • 作者单位

    Department of Population Health Sciences, Bristol Medical School,University of Bristol,Bristol,UK;

    Department of Population Health Sciences, Bristol Medical School,University of Bristol,Bristol,UK;

    Pharmacometrics,Pfizer Ltd,Kent,UK;

    Pharmacometrics,Pfizer Ltd,Kent,UK;

    Department of Population Health Sciences, Bristol Medical School,University of Bristol,Bristol,UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号