首页> 外文期刊>Research journal of applied science, engineering and technology >Image Classification for Ultrasound Fetal Images with Increased Nuchal Translucency during First Trimester Using SVM Classifier
【24h】

Image Classification for Ultrasound Fetal Images with Increased Nuchal Translucency during First Trimester Using SVM Classifier

机译:使用SVM分类器对妊娠早期胎颈透明度增高的超声胎儿图像进行图像分类

获取原文
获取原文并翻译 | 示例

摘要

Increased Nuchal Translucency is an indicator of increased risk for Down syndrome, which is identified by measuring Nuchal Translucency from ultrasound fetal images during 11 to 13~(+6) weeks of gestation. Increased NT is associated with chromosomal abnormalities. In this study an efficient classification system based on Discrete Wavelet Transform (DWT) is proposed to detect the normal and abnormal images with NT. Feature extraction is an essential pre-processing step for pattern recognition and machine learning problems. In order to classify the ultrasound image accurately, the texture features must be extracted effectively. In the proposed system, wavelet band signature, energy is used as features to classify the ultrasound image for the detection of Down syndrome using Support Vector Machine (SVM) classifier. The experimental results of pre diagnosed database with Discrete wavelet , Transform and SVM classifier give best results for classification of Down Syndrome images with Normal NT and abnormal NT.
机译:颈部半透明性增加是唐氏综合症风险增加的指标,唐氏综合症的危险性可以通过在妊娠11到13〜(+6)周的超声胎儿图像中测量其颈部半透明性来确定。 NT增加与染色体异常有关。在这项研究中,提出了一种基于离散小波变换(DWT)的有效分类系统,以利用NT来检测正常和异常图像。特征提取是模式识别和机器学习问题的重要预处理步骤。为了准确地对超声图像进行分类,必须有效地提取纹理特征。在提出的系统中,小波带签名,能量被用作特征,以使用支持向量机(SVM)分类器对超声图像进行分类,以检测唐氏综合症。用离散小波,变换和支持向量机分类器对数据库进行预诊断的实验结果为正常NT和异常NT对唐氏综合症图像的分类提供了最好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号