...
首页> 外文期刊>Renewable energy >A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory
【24h】

A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory

机译:熵生成理论泵中泵中泵能量耗散机制的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

The utilization of pumps in reverse function is one of the economically beneficial methods for off-grid power generation in micro-hydropower capacities. The traditional method of hydraulic loss calculation in turbomachinery based on pressure drop calculations is unable to determine the exact location of losses. In this paper, the irreversible energy losses within the PAT has been studied for the first time using entropy generation theory and the second law of thermodynamics point of view. In order to conduct numerical simulation, the 3-dimensional incompressible steady-state flow within the PAT is simulated by solving the Reynolds averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) turbulence model is considered for turbulence modeling. The quantity of direct (viscous) and turbulent entropy generation rate is calculated in different PAT components in 9 different flow rates in the range of 0.7QBEP to 1.3QBEP. The numerical results show that the turbulent term is the main factor of entropy production within the PAT (86.89%-90.98%), and thus, turbulent entropy generation is the dominant mechanism for hydraulic losses. More than 50% of the energy dissipation occurs within the PAT runner. Most of the losses within the runner take place at the blade leading edge, blade trailing edge and flow separation regions of the blade suction and pressure sides. The volumetric entropy generation rate analysis demonstrates that the draft tube has the most potential to generate irreversible losses among all the components (47.37%). Flow field analysis reveals that the blade inlet shock, flow deviation at the blade outlet, flow separation, backflow and vortices in flow passages are categorized as the main reasons for entropy production and irreversible hydraulic losses within the PAT components. The advantages of the entropy generation method including the determination of the exact location and quantity of energy dissipation within the PAT are indicated in this investigation. (c) 2020 Elsevier Ltd. All rights reserved.
机译:反向功能中的泵的利用是微水力电容中的偏压发电的经济有益方法之一。基于压降计算的涡轮机械液压损耗计算方法无法确定损失的确切位置。在本文中,使用熵生成理论和第二热力学观点的第二律研究了PAT内的不可逆能量损失。为了进行数值模拟,通过求解雷诺平均的Navier-Stokes(RAN)方程,模拟PAT内的三维不可压缩稳态流量。考虑剪切应力传输(SST)湍流模型进行湍流建模。直接(粘性)和湍流熵产生率的数量在不同的PAT组件中以9种不同的流速计算,范围为0.7qbep至1.3qbep。数值结果表明,湍流术语是凝固产量的主要因素在PAT中(86.89%-90.98%),因​​此,湍流熵产生是液压损失的主导机制。 Pat跑尔纳的超过50%的能量耗散发生。转轮内的大部分损失在刀片前缘,叶片后缘和叶片抽吸和压力侧的流量分离区域处发生。体积熵产生率分析表明,牵伸管具有最有可能在所有组分中产生不可逆损失(47.37%)。流场分析显示,叶片入口冲击,叶片出口的流动偏差,流动通道的流量分离,回流和涡流被分类为PAT部件内熵产生和不可逆水力损耗的主要原因。在该研究中表明了包括确定PAT内的能量耗散的确切位置和能量耗散量的熵产生方法的优点。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号