首页> 外文期刊>Reliable Computing >Outlier Detection under Interval Uncertainty: Algorithmic Solvability and Computational Complexity
【24h】

Outlier Detection under Interval Uncertainty: Algorithmic Solvability and Computational Complexity

机译:区间不确定性下的异常值检测:算法可解性和计算复杂性

获取原文
获取原文并翻译 | 示例

摘要

In many application areas, it is important to detect outliers. The traditional engineering approach to outlier detection is that we start with some "normal" values x_1.....x_n, compute the sample average E, the sample standard variation σ, and then mark a value x as an outlier if x is outside the k_0-sigma interval [E - k_0 · σ, E + k_0 · σ] (for some pre-selected parameter k_0). In real life, we often have only interval ranges [x_i, x_i,] for the normal values x_1,…,x_n. In this case, we only have intervals of possible values for the bounds E - k_0 · σ and E + k_0 · σ. We can therefore identify outliers as values that are outside all k_0 -sigma intervals. Once we identify a value as an outlier for a fixed k_0 , it is also desirable to find out to what degree this value is an outlier, i.e., what is the largest value k_0 for which this value is an outlier. In this paper, we analyze the computational complexity of these outlier detection problems, provide efficient algorithms that solve some of these problems (under reasonable conditions), and list related open problems.
机译:在许多应用领域中,检测异常值很重要。传统的异常值检测工程方法是,我们从一些“正常”值x_1 ..... x_n开始,计算样本平均值E,样本标准差σ,然后如果x在外部,则将值x标记为异常值k_0-sigma间隔[E-k_0·σ,E + k_0·σ](对于某些预选参数k_0)。在现实生活中,对于正常值x_1,…,x_n,我们通常只有间隔范围[x_i,x_i,]。在这种情况下,我们只有边界E-k_0·σ和E + k_0·σ的可能值的间隔。因此,我们可以将异常值识别为所有k_0 -sigma间隔之外的值。一旦我们将一个值确定为固定k_0的离群值,也希望找出该值在多大程度上是离群值,即该值对于其而言是最大值k_0是多少。在本文中,我们分析了这些离群值检测问题的计算复杂性,提供了解决这些问题(在合理条件下)的有效算法,并列出了相关的未解决问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号