首页> 外文期刊>Reliability Engineering & System Safety >Reliability based design optimization with approximate failure probability function in partitioned design space
【24h】

Reliability based design optimization with approximate failure probability function in partitioned design space

机译:分区设计空间中具有近似故障概率函数的基于可靠性的设计优化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an efficient method for reliability-based design optimization (RBDO), which is robust to complex systems involving computationally expensive numerical models and/or a large number of random variables. This novel method belongs to a type of decoupling approaches in which the failure probability function (FPF) is approximated in the partitioned design space. In the setting of augmented reliability formulation, for a specific design configuration, the failure probability of a system is proportional to the probability density value of design variables conditioned on the failure event, thus transforming FPF approximation into a problem of density estimation. In this paper, we partition the design space into several subspaces and then estimate the density of failure samples in each subspace by binning and constructing regression functions. Sufficient failure samples are efficiently generated in each subspace using Markov Chain Monte Carlo method, which guarantees the accuracy of FPF approximation over there and ultimately over the entire design space. Three illustrative examples involving structural systems subjected to static or dynamic loadings are discussed to demonstrate the efficiency and accuracy of the proposed method. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文提出了一种基于可靠性的设计优化(RBDO)的有效方法,该方法对于涉及计算量大的数值模型和/或大量随机变量的复杂系统具有鲁棒性。这种新颖的方法属于一种解耦方法,其中故障概率函数(FPF)在分区设计空间中近似。在增强可靠性公式的设置中,对于特定的设计配置,系统的故障概率与以故障事件为条件的设计变量的概率密度值成比例,从而将FPF近似转换为密度估计问题。在本文中,我们将设计空间划分为几个子空间,然后通过合并和构造回归函数来估计每个子空间中的故障样本密度。使用马尔可夫链蒙特卡洛方法在每个子空间中有效生成足够的故障样本,这保证了FPF逼近整个设计空间以及最终整个设计空间的准确性。讨论了涉及承受静态或动态载荷的结构系统的三个说明性示例,以证明所提出方法的效率和准确性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号