首页> 外文期刊>Reliability Engineering & System Safety >Bayesian based methodology for the extraction and validation of time bound failure signatures for online failure prediction
【24h】

Bayesian based methodology for the extraction and validation of time bound failure signatures for online failure prediction

机译:基于贝叶斯的方法,用于在线故障预测的时限故障特征的提取和验证

获取原文
获取原文并翻译 | 示例

摘要

Increasing demand volume and diversity have led the emergence of high-mix low-volume production lines where success requires sustainable production capacities. However, equipment breakdowns significantly reduce and disrupt these capacities. This give rise of interest in developing methodologies to avoid failures by treating their respective causes, prior to the failure occurrences. In this paper, we present a methodology to extract and validate rules (and patterns) as time bound failure signatures for real time failure predictions, using Bayesian approach. In comparison to existing approaches to learn and extract failure signatures, the presented methodology offers extraction, selection and validation of rules/patterns which is linked to sufficient time to execute corrective and proactive measures to avoid failures (the time bound). Moreover, proposed methodology uses event driven contextual information from product, process, equipment and maintenance data sources, instead of relying only on sensor data. This is to avoid sensor biases, as decision support equipment/module levels and the fact that failure source is not necessarily the equipment which could result in over engineering. This methodology is tested and extracted rules are validated using data collected from a world reputed semiconductor manufacturer. (C) 2017 Elsevier Ltd. All rights reserved.
机译:需求量和多样性的增加导致了高混合小批量生产线的出现,而成功需要可持续的生产能力。但是,设备故障大大降低并破坏了这些能力。这引起了对开发方法的兴趣,这些方法通过在发生故障之前处理各自的原因来避免发生故障。在本文中,我们提出一种使用贝叶斯方法提取和验证规则(和模式)作为实时故障预测的时限故障签名的方法。与学习和提取故障特征的现有方法相比,本方法论提供了规则/模式的提取,选择和验证,这些规则/模式与足够的时间链接以执行纠正和主动措施以避免故障(时间限制)。此外,所提出的方法使用来自产品,过程,设备和维护数据源的事件驱动的上下文信息,而不是仅依赖于传感器数据。这是为了避免传感器偏差,作为决策支持设备/模块级别,以及故障源不一定是可能导致过度工程的设备这一事实。使用从世界知名的半导体制造商处收集的数据对这种方法进行测试并验证提取的规则。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号