首页> 外文期刊>Reliability Engineering & System Safety >Unavailability assessment of redundant safety instrumented systems subject to process demand
【24h】

Unavailability assessment of redundant safety instrumented systems subject to process demand

机译:根据过程需求对冗余安全仪表系统进行不可用性评估

获取原文
获取原文并翻译 | 示例

摘要

The process industry has always been faced with the challenging task of determining the overall unavailability of safeguarding systems such as the safety instrumented systems (SISs). This paper proposes an unavailability model for a redundant SIS using Markov chains. The proposed model incorporates process demands in conjunction with dangerous detected and undetected failures for the first time and evaluates their impacts on the unavailability quantification of SIS. The unavailability of the safety instrumented system is quantified by considering the probability of failure on demand (PFD) for low demand systems. The safety performance of the system is also assessed using hazardous event frequency (HEF) to measure the frequency of system entering a hazardous state that will lead to an accident. The accuracy of the proposed Markov model is verified for a case study of a chemical reactor protection system. It is demonstrated that the proposed approach provides a sufficiently robust result for all demand rates, demand durations, dangerous detected and undetected failure rates and associated repair rates for safety instrumented systems utilised in low demand mode of operation. The effectiveness of the proposed model offers a robust opportunity to conduct unavailability assessment of redundant SISs subject to process demands. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在确定安全性系统(SIS)等保障系统的总体不可用性方面,过程工业一直面临着艰巨的任务。本文提出了使用马尔可夫链的冗余SIS的不可用性模型。所提出的模型首次将过程需求与危险的已发现和未发现的故障结合在一起,并评估了它们对SIS的不可用性量化的影响。通过考虑低需求系统的按需故障概率(PFD)来量化安全仪表系统的不可用性。还使用危险事件频率(HEF)评估系统的安全性能,以测量系统进入会导致事故的危险状态的频率。所提出的马尔可夫模型的准确性已针对化学反应堆保护系统的案例研究进行了验证。事实证明,对于在低需求操作模式下使用的安全仪表系统,所提出的方法可为所有需求率,需求持续时间,危险检测和未检测到的故障率以及相关的维修率提供足够可靠的结果。所提出的模型的有效性提供了一个强大的机会,可以根据过程需求对冗余SIS进行不可用性评估。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号