首页> 外文期刊>Reliability Engineering & System Safety >Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis
【24h】

Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis

机译:朝向卷积神经网络模型,用于对水路风险分析进行分类区域船舶碰撞风险水平

获取原文
获取原文并翻译 | 示例

摘要

Estimating the navigational risk of vessels operating in sea and waterway areas is important for waterway risk management and pollution preparedness and response planning. Existing methods relying on a model-informed expert judgment of ship-ship collision risk are of limited practical use because periodic risk monitoring is feasible only when this can be done without extensive use of organizational resources. To alleviate such limitations, this article presents a new approach based Convolutional Neural Networks (CNNs) and image recognition to interpret and classify ship-ship collision risks in encounter scenarios. The specific aim of the article is to investigate whether a CNN-based model can quickly and accurately interpret images constructed based on data from the Automatic Identification System (AIS) in terms of collision risk. To test this, estimates derived from training data are compared to validation data. It is also investigated whether adding additional navigational information based on AIS data improves the model's predictive accuracy. A case study with data from the Baltic Sea area is implemented, where various model design alternatives are tested as a proof-of-concept. The main finding of this work is that a CNN-based approach can indeed meet the specified design requirements, suggesting that this is a fruitful direction for future work. Several issues requiring further research and developed are discussed, with the validity of the risk ratings underlying the image classification seen as the most significant conceptual challenge before a CNN-model can be put to practical use.
机译:估算海洋和水道地区经营船舶的导航风险对于水路风险管理和污染准备和响应规划至关重要。现有方法依赖于船舶碰撞风险的模型通知的专家判断是有限的实际应用,因为只有在没有广泛使用组织资源的情况下可以进行定期风险监测。为了缓解这些限制,本文提出了一种基于新的卷积神经网络(CNNS)和图像识别,以解释和分类遇到遇到方案中的船舶碰撞风险。本文的具体目的是研究基于CNN的模型是否可以在碰撞风险方面基于来自自动识别系统(AIS)的数据来快速和准确地解释图像构建的图像。为了测试这一点,将培训数据源于验证数据进行比较。还研究了基于AIS数据添加其他导航信息,提高了模型的预测精度。实施来自波罗的海地区数据的案例研究,其中各种模型设计替代品被测试为概念验证。这项工作的主要发现是,基于CNN的方法可以确实满足指定的设计要求,这表明这是未来工作的富有成果的方向。讨论了需要进一步研究和开发的几个问题,具有潜在的图像分类的风险评级的有效性被视为最重要的概念挑战,在CNN模型可以施加实际使用之前。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号