首页> 外文期刊>Reliability Engineering & System Safety >Predictive group maintenance for multi-system multi-component networks
【24h】

Predictive group maintenance for multi-system multi-component networks

机译:多系统多组件网络的预测性组维护

获取原文
获取原文并翻译 | 示例

摘要

Predictive maintenance has become highly popular in recent years due to the emergence of novel condition monitoring and data analysis techniques. However, the application of predictive maintenance at the network-level has not seen much attention in the literature. This paper presents a model for predictive group maintenance for multi-system multi-components networks (MSMCN). These networks are composed of multiple systems that are, in turn, composed of multiple components. In particular, the hierarchical structure of the MSMCN enables different representations of dependences at the network and system levels. The key novelty in the paper is that the designed approach combines analytical and numerical techniques to optimize the predictive group maintenance policy for MSMCNs. Moreover, we introduce a genetic algorithm with agglomerative mutation (GA-A) that enables a more effective evolution of the predictive group maintenance policy. Application of this model on a case study of a two-bridge network made of 23 different components shows a potential 11.27% reduction in maintenance cost, highlighting the model's practical significance.
机译:近年来,由于新的状态监控和数据分析技术的出现,预测性维护已变得非常流行。但是,在网络级别上的预测性维护的应用在文献中并未引起太多关注。本文提出了一种用于多系统多组件网络(MSMCN)的预测性组维护模型。这些网络由多个系统组成,而这些系统又由多个组件组成。特别是,MSMCN的层次结构可以在网络和系统级别实现对依赖关系的不同表示。本文的主要新颖之处在于,该设计方法结合了分析和数值技术,以优化MSMCN的预测性组维护策略。此外,我们引入了具有凝聚突变(GA-A)的遗传算法,该算法可使预测组维护策略更有效地发展。该模型在由23个不同组件组成的双桥网络案例研究中的应用表明,维护成本可能降低11.27%,突出了该模型的实际意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号