首页> 外文期刊>Reliability Engineering & System Safety >Dynamic Bayesian networks based approach for risk analysis of subsea wellhead fatigue failure during service life
【24h】

Dynamic Bayesian networks based approach for risk analysis of subsea wellhead fatigue failure during service life

机译:基于动态贝叶斯网络的使用寿命期内海底井口疲劳失效风险分析方法

获取原文
获取原文并翻译 | 示例

摘要

Subsea wellhead is a critical component of the drilling and production system in offshore oil and gas industry. Excited by cyclical fatigue loadings due to environmental forces, the wellhead is prone to fatigue failure, which could lead to the loss of well integrity and even catastrophic accidents. Although fatigue failure probability of the well-head carries an elevated uncertainties, it will definitely increase with the accumulation of fatigue in wellhead. This paper presents a fatigue failure risk analysis approach based on dynamic Bayesian Networks, aiming to predict the fatigue failure probability of the wellhead during service life. The proposed model can use the previously accumulated fatigue of the wellhead to probabilistically predict the present failure risk under present dynamic conditions. The practical application of the developed model is demonstrated through a case study. Adopting the predictive, diagnostic analysis techniques in the Bayesian inference, the dynamic fatigue failure probability of the wellhead at any time slices was achieved, and the most influential factors were figured out. Finally, the corresponding safety control measures are proposed to effectively mitigate the fatigue failure risk of subsea wellhead during service life.
机译:水下井口是海上石油和天然气行业钻探和生产系统的重要组成部分。由于环境力引起的周期性疲劳载荷的激发,井口容易发生疲劳破坏,这可能导致井完整性的损失,甚至发生灾难性事故。尽管井口的疲劳失效概率具有较高的不确定性,但它肯定会随着井口疲劳的累积而增加。本文提出了一种基于动态贝叶斯网络的疲劳失效风险分析方法,旨在预测井口使用寿命期间的疲劳失效概率。所提出的模型可以使用井口的先前累积的疲劳来概率地预测在当前动态条件下的当前失效风险。通过案例研究证明了所开发模型的实际应用。在贝叶斯推断中采用预测,诊断分析技术,可以在任何时间段获得井口的动态疲劳破坏概率,并找出影响最大的因素。最后,提出了相应的安全控制措施,以有效减轻海底井口使用寿命期间的疲劳失效风险。

著录项

  • 来源
    《Reliability Engineering & System Safety》 |2019年第8期|454-462|共9页
  • 作者单位

    China Univ Petr East China, COEST, Qingdao, Shandong, Peoples R China|China Univ Petr East China, Coll Mech & Elect Engn, Qingdao, Shandong, Peoples R China;

    China Univ Petr East China, COEST, Qingdao, Shandong, Peoples R China|China Univ Petr East China, Coll Mech & Elect Engn, Qingdao, Shandong, Peoples R China;

    China Univ Petr East China, COEST, Qingdao, Shandong, Peoples R China|China Univ Petr East China, Coll Mech & Elect Engn, Qingdao, Shandong, Peoples R China;

    China Univ Petr East China, COEST, Qingdao, Shandong, Peoples R China|China Univ Petr East China, Coll Mech & Elect Engn, Qingdao, Shandong, Peoples R China;

    China Univ Petr East China, COEST, Qingdao, Shandong, Peoples R China|China Univ Petr East China, Coll Mech & Elect Engn, Qingdao, Shandong, Peoples R China;

    China Univ Petr East China, COEST, Qingdao, Shandong, Peoples R China|China Univ Petr East China, Coll Mech & Elect Engn, Qingdao, Shandong, Peoples R China;

    China Univ Petr East China, Coll Mech & Elect Engn, Qingdao, Shandong, Peoples R China;

    Res Inst China Natl Offshore Oil Corp, Beijing, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dynamic Bayesian network; Subsea wellhead; Service life fatigue failure; Probabilistic prediction;

    机译:动态贝叶斯网络;海底井口;使用寿命疲劳失效;概率预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号