首页> 外文期刊>Reliability Engineering & System Safety >Multi-objective genetic algorithm for solving N-version program design problem
【24h】

Multi-objective genetic algorithm for solving N-version program design problem

机译:解决N版本程序设计问题的多目标遗传算法

获取原文
获取原文并翻译 | 示例

摘要

N-version programming (NVP) is a programming approach for constructing fault tolerant software systems. Generally, an optimization model utilized in NVP selects the optimal set of versions for each module to maximize the system reliability and to constrain the total cost to remain within a given budget. In such a model, while the number of versions included in the obtained solution is generally reduced, the budget restriction may be so rigid that it may fail to find the optimal solution. In order to ameliorate this problem, this paper proposes a novel bi-objective optimization model that maximizes the system reliability and minimizes the system total cost for designing N-version software systems. When solving multi-objective optimization problem, it is crucial to find Pareto solutions. It is, however, not easy to obtain them. In this paper, we propose a novel bi-objective optimization model that obtains many Pareto solutions efficiently. We formulate the optimal design problem of NVP as a bi-objective 0-1 nonlinear integer programming problem. In order to overcome this problem, we propose a Multi-objective genetic algorithm (MOGA), which is a powerful, though time-consuming, method to solve multi-objective optimization problems. When implementing genetic algorithm (GA), the use of an appropriate genetic representation scheme is one of the most important issues to obtain good performance. We employ random-key representation in our MOGA to find many Pareto solutions spaced as evenly as possible along the Pareto frontier. To pursue improve further performance, we introduce elitism, the Pareto-insertion and the Pareto-deletion operations based on distance between Pareto solutions in the selection process. The proposed MOGA obtains many Pareto solutions along the Pareto frontier evenly. The user of the MOGA can select the best compromise solution among the candidates by controlling the balance between the system reliability and the total cost.
机译:N版本编程(NVP)是一种用于构建容错软件系统的编程方法。通常,NVP中使用的优化模型为每个模块选择最佳版本集,以最大程度地提高系统可靠性并限制总成本以保持在给定的预算范围内。在这样的模型中,虽然通常减少了获得的解决方案中包含的版本数量,但是预算限制可能非常严格,以至于可能无法找到最佳解决方案。为了解决这个问题,本文提出了一种新颖的双目标优化模型,该模型最大化了系统的可靠性,并使设计N版本软件系统的系统总成本最小化。解决多目标优化问题时,找到Pareto解至关重要。但是,获取它们并不容易。在本文中,我们提出了一种新颖的双目标优化模型,该模型可以有效地获得许多Pareto解。我们将NVP的最佳设计问题表述为双目标0-1非线性整数规划问题。为了解决这个问题,我们提出了一种多目标遗传算法(MOGA),它是解决多目标优化问题的一种强大但耗时的方法。在实施遗传算法(GA)时,使用适当的遗传表示方案是获得良好性能的最重要问题之一。我们在MOGA中采用随机密钥表示法,以找到许多沿Pareto边界尽可能均匀分布的Pareto解决方案。为了追求更好的性能,我们在选择过程中根据帕累托解决方案之间的距离引入了精英主义,帕累托插入和帕累托删除操作。提出的MOGA沿着Pareto边界均匀地获得了许多Pareto解决方案。 MOGA的用户可以通过控制系统可靠性和总成本之间的平衡来选择最佳的折衷解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号