首页> 外文期刊>Reliability Engineering & System Safety >A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems
【24h】

A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems

机译:支持向量机集成系统,用于对核组件和系统中的操作异常进行分类

获取原文
获取原文并翻译 | 示例

摘要

A support vector machine (SVM) approach to the classification of transients in nuclear power plants is presented. SVM is a machine-learning algorithm that has been successfully used in pattern recognition for cluster analysis. In the present work, single- and multiclass SVM are combined into a hierarchical structure for distinguishing among transients in nuclear systems on the basis of measured data. An example of application of the approach is presented with respect to the classification of anomalies and malfunctions occurring in the feedwater system of a boiling water reactor. The data used in the example are provided by the HAMBO simulator of the Halden Reactor Project.
机译:提出了一种用于核电站暂态分类的支持向量机(SVM)方法。 SVM是一种机器学习算法,已成功用于模式识别的聚类分析。在当前的工作中,单类和多类SVM被组合到一个分层结构中,用于根据实测数据区分核系统中的瞬变。就沸水反应堆给水系统中发生的异常和故障的分类,给出了该方法的应用示例。该示例中使用的数据由Halden Reactor Project的HAMBO仿真器提供。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号