首页> 外文期刊>Reliability Engineering & System Safety >Application of fault tree analysis for customer reliability assessment of a distribution power system
【24h】

Application of fault tree analysis for customer reliability assessment of a distribution power system

机译:故障树分析在配电系统客户可靠性评估中的应用

获取原文
获取原文并翻译 | 示例

摘要

A new method is developed for predicting customer reliability of a distribution power system using the fault tree approach with customer weighted values of component failure frequencies and downtimes. Conventional customer reliability prediction of the electric grid employs the system average (SA) component failure frequency and downtime that are weighted by only the quantity of the components in the system. These SA parameters are then used to calculate the reliability and availability of components in the system, and eventually to find the effect on customer reliability. Although this approach is intuitive, information is lost regarding customer disturbance experiences when customer information is not utilized in the SA parameter calculations, contributing to inaccuracies when predicting customer reliability indices in our study. Hence our new approach directly incorporates customer disturbance information in component failure frequency and downtime calculations by weighting these parameters with information of customer interruptions. This customer weighted (CW) approach significantly improves the prediction of customer reliability indices when applied to our reliability model with fault tree and two-state Markov chain formulations. Our method has been successfully applied to an actual distribution power system that serves over 2.1 million customers. Our results show an improved benchmarking performance on the system average interruption frequency index (SAIFI) by 26% between the SA-based and CW-based reliability calculations.
机译:开发了一种新的方法,该方法使用故障树方法以及组件故障频率和停机时间的客户加权值来预测配电系统的客户可靠性。电网的常规客户可靠性预测使用系统平均(SA)组件故障频率和停机时间,这些故障频率和停机时间仅由系统中组件的数量加权。这些SA参数然后用于计算系统中组件的可靠性和可用性,并最终找到对客户可靠性的影响。尽管这种方法很直观,但是如果在SA参数计算中未使用客户信息,则会丢失有关客户干扰体验的信息,从而在我们的研究中预测客户可靠性指标时会导致不准确。因此,我们的新方法通过使用客户中断信息对这些参数进行加权,将客户干扰信息直接纳入组件故障频率和停机时间计算中。这种客户加权(CW)方法在将我们的具有故障树和两状态马尔可夫链公式的可靠性模型应用于可靠性模型时,可以显着改善客户可靠性指标的预测。我们的方法已成功应用于可为210万以上客户提供服务的实际配电系统。我们的结果表明,在基于SA和基于CW的可靠性计算之间,系统平均中断频率指数(SAIFI)的基准性能提高了26%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号