首页> 外文期刊>Reliability Engineering & System Safety >Mapping model validation metrics to subject matter expert scores for model adequacy assessment
【24h】

Mapping model validation metrics to subject matter expert scores for model adequacy assessment

机译:将模型验证指标映射到主题专家评分以进行模型充分性评估

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a novel approach to incorporate the contributions of both quantitative validation metrics and qualitative subject matter expert (SME) evaluation criteria in model validation assessment The relationship between validation metrics (input) and SME scores (output) is formulated as a classification problem, and a probabilistic neural network (PNN) is constructed to execute this mapping. Establishing PNN classifiers for a wide variety of combinations of validation metrics allows for a quantitative comparison of validation metric performance in representing SME judgment. An advantage to this approach is that it semi-automates the model validation process and subsequently is capable of incorporating the contributions of large data sets of disparate response quantities of interest in model validation assessment. The effectiveness of this approach is demonstrated on a complex real-world problem involving the shock qualification testing of a floating shock platform. A data set of experimental and simulated pairs of time history comparisons along with associated SME scores and computed validation metrics is obtained and utilized to construct the PNN classifiers through K-fold cross validation. A wide range of validation metrics for time history comparisons is considered including feature-specific metrics (phase and magnitude error), a frequency metric (shock response spectra), a time-frequency metric (wavelet decomposition), and a global metric (index of agreement). The PNN classifiers constructed using a Parzen kernel for the class conditional probability density function whose smoothing parameter is optimized using a genetic algorithm performs well in representing SME judgment.
机译:本文提出了一种新颖的方法,将定量验证指标和定性主题专家(SME)评估标准的贡献纳入模型验证评估中。验证指标(输入)和SME得分(输出)之间的关系被表述为分类问题,并构造一个概率神经网络(PNN)来执行此映射。为验证指标的各种组合建立PNN分类器,可以定量比较代表中小企业判断的验证指标性能。这种方法的优点是它使模型验证过程半自动化,并且随后能够在模型验证评估中合并感兴趣的不同响应量的大型数据集。这种方法在涉及浮式冲击平台的冲击鉴定测试的复杂现实问题中得到了证明。获得了一组实验和模拟的时间历史比较对的数据集,以及相关的SME分数和计算得出的验证指标,并将其用于通过K折交叉验证构建PNN分类器。考虑了用于时间历史比较的多种验证指标,包括特定于特征的指标(相位和幅度误差),频率指标(冲击响应谱),时频指标(小波分解)和全局指标(指数)。协议)。使用Parzen核为类条件概率密度函数构造的PNN分类器,其平滑参数使用遗传算法进行了优化,在表示SME判断方面表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号