首页> 外文期刊>Reliability Engineering & System Safety >Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study
【24h】

Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study

机译:基于方差敏感性分析的空间划分方法:最优划分方案和比较研究

获取原文
获取原文并翻译 | 示例

摘要

Variance-based sensitivity analysis has been widely studied and asserted itself among practitioners. Monte Carlo simulation methods are well developed in the calculation of variance-based sensitivity indices but they do not make full use of each model run. Recently, several works mentioned a scatter-plot partitioning method to estimate the variance-based sensitivity indices from given data, where a single bunch of samples is sufficient to estimate all the sensitivity indices. This paper focuses on the space-partition method in the estimation of variance-based sensitivity indices, and its convergence and other performances are investigated. Since the method heavily depends on the partition scheme, the influence of the partition scheme is discussed and the optimal partition scheme is proposed based on the minimized estimator's variance. A decomposition and integration procedure is proposed to improve the estimation quality for higher order sensitivity indices. The proposed space-partition method is compared with the more traditional method and test cases show that it outperforms the traditional one.
机译:基于方差的敏感性分析已经得到了广泛的研究,并在实践者中得到了肯定。蒙特卡罗模拟方法在基于方差的灵敏度指标的计算中得到了很好的发展,但它们并未充分利用每个模型运行。最近,几项工作提到了一种散点图分区方法,用于根据给定数据估算基于方差的敏感度指标,其中一堆样本足以估算所有敏感度指标。本文在估计基于方差的敏感性指标时着重于空间划分方法,并研究了其收敛性和其他性能。由于该方法严重依赖于分区方案,因此讨论了分区方案的影响,并基于最小化估计量方差提出了最优分区方案。为了提高高阶灵敏度指标的估计质量,提出了一种分解和积分程序。将提出的空间划分方法与更传统的方法进行了比较,测试案例表明,该方法优于传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号