首页> 外文期刊>Reliability Engineering & System Safety >Variable-fidelity model selection for stochastic simulation
【24h】

Variable-fidelity model selection for stochastic simulation

机译:随机模拟的可变保真度模型选择

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a model selection methodology for maximizing the accuracy in the predicted distribution of a stochastic output of interest subject to an available computational budget Model choices of different resolutions/fidelities such as coarse vs. fine mesh and linear vs. nonlinear material model are considered. The proposed approach makes use of efficient simulation techniques and mathematical surrogate models to develop a model selection framework. The model decision is made by considering the expected (or estimated) discrepancy between model prediction and the best available information about the quantity of interest, as well as the simulation effort required for the particular model choice. The form of the best available information may be the result of a maximum fidelity simulation, a physical experiment, or expert opinion. Several different situations corresponding to the type and amount of data are considered for a Monte Carlo simulation over the input space. The proposed methods are illustrated for a crack growth simulation problem in which model choices must be made for each cycle or cycle block even within one input sample.
机译:本文提出了一种模型选择方法,该模型选择方法可在可获得的计算预算的前提下最大程度地提高目标随机输出的预期分布的精度,其中考虑了不同分辨率/保真度的模型选择,例如粗体模型与精细模型,线性模型与非线性材料模型。 。提出的方法利用有效的仿真技术和数学替代模型来开发模型选择框架。模型决策是通过考虑模型预测与有关关注数量的最佳可用信息以及特定模型选择所需的仿真工作之间的预期(或估计)差异而做出的。最佳可用信息的形式可能是最大保真度模拟,物理实验或专家意见的结果。针对输入空间上的蒙特卡洛模拟,考虑了与数据类型和数据量相对应的几种不同情况。说明了针对裂纹扩展模拟问题提出的方法,其中即使在一个输入样本内,也必须为每个循环或每个循环块选择模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号