首页> 外文期刊>Reliability Engineering & System Safety >Evidence-based quantification of uncertainties induced via simulation-based modeling
【24h】

Evidence-based quantification of uncertainties induced via simulation-based modeling

机译:通过基于模拟的建模方法得出的不确定性的基于证据的量化

获取原文
获取原文并翻译 | 示例

摘要

The quantification of uncertainties in simulation-based modeling traditionally focuses upon quantifying uncertainties in the parameters input into the model, referred to as parametric uncertainties. Often neglected in such an approach are the uncertainties induced by the modeling process itself. This deficiency is often due to a lack of information regarding the problem or the models considered, which could theoretically be reduced through the introduction of additional data. Because of the nature of this epistemic uncertainty, traditional probabilistic frameworks utilized for the quantification of uncertainties are not necessarily applicable to quantify the uncertainties induced in the modeling process itself. This work develops and utilizes a methodology - incorporating aspects of Dempster-Shafer Theory and Bayesian model averaging - to quantify uncertainties of all forms for simulation-based modeling problems. The approach expands upon classical parametric uncertainty approaches, allowing for the quantification of modeling-induced uncertainties as well, ultimately providing bounds on classical probability without the loss of epistemic generality. The approach is demonstrated on two different simulation-based modeling problems: the computation of the natural frequency of a simple two degree of freedom non-linear spring mass system and the calculation of the flutter velocity coefficient for the AGARD 445.6 wing given a subset of commercially available modeling choices.
机译:传统上,基于仿真的建模中的不确定性量化着重于量化输入模型的参数中的不确定性,称为参数不确定性。在这种方法中,经常会忽略建模过程本身带来的不确定性。这种缺陷通常是由于缺少有关问题或所考虑模型的信息,理论上可以通过引入其他数据来减少这些信息。由于这种认知不确定性的性质,用于量化不确定性的传统概率框架不一定适用于量化在建模过程本身中引起的不确定性。这项工作开发并利用了一种方法-结合了Dempster-Shafer理论和贝叶斯模型平均的各个方面-量化了基于仿真的建模问题的所有形式的不确定性。该方法在经典参数不确定性方法的基础上扩展,还允许对模型引起的不确定性进行量化,从而最终在不丧失认知普遍性的情况下为经典概率提供了界限。在两个不同的基于仿真的建模问题上论证了该方法:简单的两自由度非线性弹簧质量系统的固有频率的计算以及给定商业子集的AGARD 445.6机翼的扑动速度系数的计算可用的建模选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号