首页> 外文期刊>Radar, Sonar & Navigation, IET >Optimised complexity reduction for maximum likelihood position estimation in spread spectrum navigation receivers
【24h】

Optimised complexity reduction for maximum likelihood position estimation in spread spectrum navigation receivers

机译:优化的复杂度降低,以实现扩频导航接收机中的最大似然位置估计

获取原文
获取原文并翻译 | 示例

摘要

In urban environments, spread spectrum radio navigation is subject to multipath propagation causing multipath errors of tens of metres. Low-complexity high-resolution channel delay estimation is crucial for position estimation in the receivers to mitigate the multipath errors. The main drawback of maximum likelihood (ML) channel delay estimation is the high computational complexity. Thus, recent publications present methods to decrease its computational complexity. These contributions assess the complexity reduction by means of signal subspace energy errors (SSEEs). This assessment of the complexity reduction is incomplete, as the relevant metric, that is, the relationship between complexity reduction and degrading position accuracy in terms of increasing root mean square error (RMSE) lacks. The authors main contribution is the derivation and analysis of this relation. The larger RMSE for complexity-reduced ML estimation algorithms compared to the implementation without complexity reduction consists of an increased noise variance and a non-zero bias. Thus, this contribution associates the SSEE and the RMSE for complexity-reduced ML estimators. Computer simulations confirm the revealed analytical relationships. Furthermore, the authors approach yields a novel method to minimise the increased noise variance of complexity-reduced ML estimation. Thus, the authors algorithms yield a lower RMSE.
机译:在城市环境中,扩频无线电导航会受到多径传播的影响,从而导致数十米的多径误差。低复杂度高分辨率信道延迟估计对于接收机中的位置估计以减轻多径误差至关重要。最大似然(ML)信道延迟估计的主要缺点是计算复杂度高。因此,最近的出版物提出了降低其计算复杂度的方法。这些贡献通过信号子空间能量误差(SSEE)评估了复杂性的降低。作为相关度量,缺乏对复杂度降低的评估,因为缺乏度量,即就提高均方根误差(RMSE)而言,降低复杂度与降低位置精度之间的关系。作者的主要贡献是对该关系的推导和分析。与不降低复杂度的实现相比,用于降低复杂度的ML估计算法的较大RMSE包括增加的噪声方差和非零偏差。因此,此贡献将SSEE和RMSE关联在一起,从而降低了复杂度,从而降低了ML估计量。计算机模拟证实了揭示的分析关系。此外,作者的方法产生了一种新颖的方法,以最小化复杂度降低的ML估计所增加的噪声方差。因此,作者的算法产生了较低的RMSE。

著录项

  • 来源
    《Radar, Sonar & Navigation, IET》 |2011年第9期|p.911-923|共13页
  • 作者

    Groh I.; Sand S.;

  • 作者单位

    Institute for Communications and Navigation, German Aerospace Center, D-82234 Wessling, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号