首页> 外文期刊>Radar, Sonar & Navigation, IET >Reducing the number of elements in a pattern reconfigurable antenna array by the multi-task learning
【24h】

Reducing the number of elements in a pattern reconfigurable antenna array by the multi-task learning

机译:通过多任务学习减少模式可重构天线阵列中的元素数量

获取原文
获取原文并翻译 | 示例

摘要

The synthesis of pattern reconfigurable antenna array with as few elements as possible can find wide applications in radar tracking, biomedical imaging, satellite and ground communications, and remote sensing applications. In this study, an efficient method for multi-task learning (MTL) is exploited to the design of sparse pattern reconfigurable antenna array. Toward this end, the design of sparse and pattern reconfigurable antenna array is reformulated as an equivalent problem of multi-matrices linear regression and iterative shrinkage threshold method for MTL is utilised to obtain jointly optimal design of positions and the excitations of the radiating elements for multi-pattern synthesis, in which compromise between the array sparseness and pattern matching is achieved. Some numerical simulations are presented to assess the efficiency of the proposed method and the synthesis performance comparisons with matrix pencil method and genetic algorithm are also performed to demonstrate the superiority of the proposed algorithm over traditional algorithm in this literature.
机译:具有尽可能少的元素的模式可重构天线阵列的合成可以在雷达跟踪,生物医学成像,卫星和地面通信以及遥感应用中找到广泛的应用。在这项研究中,一种有效的多任务学习(MTL)方法被用于稀疏模式可重构天线阵列的设计。为此,将稀疏和方向图可重构天线阵列的设计重新表述为多矩阵线性回归的等效问题,并利用MTL的迭代收缩阈值方法共同获得多个天线的位置和激励的最优设计。 -模式合成,在阵列稀疏和模式匹配之间达成折衷。进行了一些数值模拟,以评估该方法的有效性,并与矩阵铅笔法和遗传算法进行了综合性能比较,以证明该算法相对于传统算法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号