首页> 外文期刊>Radar, Sonar & Navigation, IET >Multi-scale feature-based fuzzy-support vector machine classification using radar range profiles
【24h】

Multi-scale feature-based fuzzy-support vector machine classification using radar range profiles

机译:基于雷达距离剖面的基于多尺度特征的模糊支持向量机分类

获取原文
获取原文并翻译 | 示例

摘要

High resolution range profile possesses great significance in automatic target recognition (ATR) research and application due to its efficiency superiority. Feature extraction is one of the major ATR research directions. Existing feature extraction techniques only concern the range profile in original scale, which constrains the cognitive level of classifiers. This study goes beyond this limitation and introduces scale space theory in the feature extraction of range profiles. The edge points of range profiles are extracted and a novel multi-scale target classification method based on fuzzy-support vector machine classifier is proposed. Range profiles of three aircraft models are selected to validate the classification method. Experiment results demonstrate that the addition of edge points is favourable to enhance range profile samples' separability. Comparison of classification performance between original and multiple scales validates multi-scale technique's feasibility in range profile classification problem. The weighting factor developed according to the quadratic entropy optimises range profile samples' membership degree distribution and brings further promotion on classification performance.
机译:高分辨率测距曲线由于其效率优势而在自动目标识别(ATR)研究和应用中具有重要意义。特征提取是ATR研究的主要方向之一。现有的特征提取技术仅关注原始范围内的范围轮廓,这限制了分类器的认知水平。这项研究超越了这一限制,并在尺度轮廓的特征提取中引入了尺度空间理论。提取了距离轮廓的边缘点,提出了一种基于模糊支持向量机分类器的多尺度目标分类方法。选择了三种飞机模型的航程轮廓以验证分类方法。实验结果表明,边缘点的添加有利于增强范围图样本的可分离性。比较原始尺度和多尺度的分类性能,验证了多尺度技术在距离剖面分类问题中的可行性。根据二次熵开发的加权因子优化了距离剖面样本的隶属度分布,并进一步提高了分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号