首页> 外文期刊>Radar, Sonar & Navigation, IET >Multi-frequency analysis of Gaussian process modelling for aperiodic RCS responses of a parameterised aircraft model
【24h】

Multi-frequency analysis of Gaussian process modelling for aperiodic RCS responses of a parameterised aircraft model

机译:参数化飞机模型对非周期性RCS响应高斯工艺建模的多频分析

获取原文
获取原文并翻译 | 示例

摘要

Radar cross-section (RCS) of an object is a complex function of various geometric variables, frequency and angles of incidence. In this work, an artificial intelligence solution is provided to predict the non-deterministic characteristics of RCS using the supervised machine learning algorithm that involves Gaussian process (GP) regression. A parametrised aircraft model is used to generate training data where five variables are selected as predictors while the response is chosen to be monostatic RCS in the azimuth plane. To provide a comparison of GP modelling-based predictions, shooting and bouncing rays-based multi-frequency RCS simulations are used and the results show good agreement. To further validate the GP-based modelling approach, the data of a design point is compared with the measured RCS of 1:8 scaled-down aircraft model, which confirms the accuracy of the proposed methodology. Good prediction capabilities of GP regression for RCS evaluation of complex geometries and requirement of small data set make it an excellent tool for exploring the large design space as well as integration into multi-disciplinary design optimisation environments.
机译:物体的雷达横截面(RCS)是各种几何变量,频率和入射角的复杂功能。在这项工作中,提供了人工智能解决方案来预测使用涉及高斯过程(GP)回归的监督机器学习算法的RCS的非确定性特征。参数化飞机模型用于生成训练数据,其中选择五个变量作为预测器,而响应被选择为方位角在方位角中的单体rcs。为了提供基于GP建模的预测的比较,使用拍摄和弹跳光线的多频RCS仿真,结果显示了良好的一致性。为了进一步验证基于GP的建模方法,将设计点的数据与1:8缩小飞机模型的测量RC进行比较,这证实了所提出的方法的准确性。 GP回归对复杂几何的评估的良好预测能力和小型数据集的要求使其成为探索大型设计空间的优秀工具,以及集成到多学科设计优化环境中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号