首页> 外文期刊>Queueing systems >The idle period of the finite G/M/1 queue with an interpretation in risk theory
【24h】

The idle period of the finite G/M/1 queue with an interpretation in risk theory

机译:具有风险理论解释的有限G / M / 1队列的空闲时间

获取原文
获取原文并翻译 | 示例

摘要

We consider a G/M/1 queue with restricted accessibility in the sense that the maximal workload is bounded by 1. If the current workload V_t of the queue plus the service time of an arriving customer exceeds 1, only 1 - V_t of the service requirement is accepted. We are interested in the distribution of the idle period, which can be interpreted as the deficit at ruin for a risk reserve process R_t in the compound Poisson risk model. For this risk process a special dividend strategy applies, where the insurance company pays out all the income whenever R, reaches level 1. In the queueing context we further introduce a set-up time a ∈[0,1]. At the end of every idle period, an arriving customer has to wait for a time units until the server is ready to serve it.
机译:我们认为G / M / 1队列的可访问性受到限制,因为最大工作负载受1限制。如果队列的当前工作负载V_t加上到达客户的服务时间超过1,则仅服务的1-V_t要求被接受。我们对空闲时间的分布感兴趣,空闲时间的分布可以解释为复合Poisson风险模型中风险准备过程R_t的破产赤字。对于这种风险过程,采用了一种特殊的分红策略,即当R达到第1级时,保险公司将所有收入都付清。在排队的情况下,我们进一步引入建立时间a∈[0,1]。在每个空闲周期结束时,到达的客户都必须等待一个时间单位,直到服务器准备好为它服务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号