首页> 外文期刊>Queueing systems >Stationary analysis of the shortest queue first service policy
【24h】

Stationary analysis of the shortest queue first service policy

机译:最短队列优先服务策略的平稳分析

获取原文
获取原文并翻译 | 示例

摘要

We analyze the so-called shortest queue first (SQF) queueing discipline whereby a unique server addresses queues in parallel by serving at any time, the queue with the smallest workload. Considering a stationary system composed of two parallel queues and assuming Poisson arrivals and general service time distributions, we first establish the functional equations satisfied by the Laplace transforms of the workloads in each queue. We further specialize these equations to the so-called "symmetric case," with same arrival rates and identical exponential service time distributions at each queue; we then obtain a functional equation M(z)=q(z)·Moh(z) + L(z) for unknown function M, where given functions q, L, and h are related to one branch of a cubic polynomial equation. We study the analyticity domain of function M and express it by a series expansion involving all iterates of function h. This allows us to determine empty queue probabilities along with the tail of the workload distribution in each queue. This tail appears to be identical to that of the head-of-line preemptive priority system, which is the key feature desired for the SQF discipline.
机译:我们分析了所谓的最短队列优先(SQF)排队规则,其中唯一的服务器通过随时服务以最小的负载并行处理队列。考虑由两个并行队列组成的固定系统,并假设泊松到达和一般服务时间分布,我们首先建立每个队列中工作负载的拉普拉斯变换所满足的函数方程。我们进一步将这些方程式专门化为所谓的“对称情况”,在每个队列中具有相同的到达率和相同的指数服务时间分布。然后,对于未知函数M,我们得到一个函数方程M(z)= q(z)·Moh(z)+ L(z),其中给定的函数q,L和h与三次多项式方程的一个分支有关。我们研究函数M的解析域,并通过涉及函数h的所有迭代的级数展开来表示。这使我们能够确定空队列概率以及每个队列中工作负载分布的结尾。这条尾巴似乎与行前抢先式优先级系统的尾巴相同,这是SQF学科所需的关键功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号