首页> 外文期刊>Quality Control, Transactions >Automatic Classification Algorithm for Diffused Liver Diseases Based on Ultrasound Images
【24h】

Automatic Classification Algorithm for Diffused Liver Diseases Based on Ultrasound Images

机译:基于超声图像的扩散肝疾病自动分类算法

获取原文
获取原文并翻译 | 示例

摘要

Diffuse liver diseases such as fatty liver and cirrhosis, are leading causes of disability and fatality across the world. Early diagnosis of these diseases is extremely important to save lives and improve the effectiveness of treatment. This study proposes a non-invasive method for diagnosing liver diseases using ultrasound images, by classifying liver tissue as normal, steatosis, or cirrhosis, using feature extraction, feature selection, and classification. First, the correlation, homogeneity, variance, entropy, contrast, energy, long run emphasis, run percentage, and standard deviation are determined. Second, the most efficient features are selected based on the Fisher discriminant and manual selection methods. Third, three voting-based sub-classifiers are used, namely, the normal/steatosis, normal/cirrhosis, and steatosis/cirrhosis classifiers. The final liver tissue classification is based on the majority function. Our classification method provides two key contributions: combination of two different feature selection methods, avoiding the limitations of each method while benefiting from their strengths; and classifier categorization into three sub-classifiers, where the overall classification is based on the decision of each individual sub-classifier. We obtained recognition accuracies for the normal/steatosis, normal/cirrhosis, and steatosis/cirrhosis classifiers as 95%, 95.74%, and 94.23%, respectively, and an overall recognition accuracy of 95%, which outperforms other methods.
机译:弥漫性肝脏疾病如脂肪肝和肝硬化,是全世界残疾和死亡的主要原因。这些疾病的早期诊断对于拯救生命来说是非常重要的,以提高治疗的有效性。本研究提出了使用超声图像诊断肝脏疾病的非侵入性方法,通过将肝脏组织分类为正常,脂肪变性或肝硬化,使用特征提取,特征选择和分类。首先,确定相关性,同质性,方差,熵,对比度,能量,长期重点,运行百分比和标准偏差。其次,基于Fisher判别和手动选择方法选择最有效的功能。第三,使用三种基于投票的子分类剂,即正常/脂肪变性,正常/肝硬化和脂肪变性/肝硬化分类剂。最终的肝组织分类基于多数函数。我们的分类方法提供了两个关键贡献:两种不同的特征选择方法的组合,避免了每种方法的局限性,同时受益于其优势;和分类器分类为三个子分类器,其中整体分类基于每个单个子分类器的决定。我们获得了正常/脂肪变性,正常/肝硬化和脂肪变性/肝硬化分类器的识别准确性,分别为95%,95.74%和94.23%,整体识别准确性为95%,这优于其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号