首页> 外文期刊>Quality Control, Transactions >A Hybrid Steady-State Compressor Model for Real-Time Applications in Performance Monitoring, Control and Optimization
【24h】

A Hybrid Steady-State Compressor Model for Real-Time Applications in Performance Monitoring, Control and Optimization

机译:用于性能监测,控制和优化的实时应用的混合稳态压缩机模型

获取原文
获取原文并翻译 | 示例

摘要

In this study, a hybrid steady-state compressor model is proposed that can be used in the real-time performance monitoring, control and optimization of the vapor compression cycle. In the proposed model, first, a detailed analysis of the mass flow rate is presented, which is based on the volumetric efficiency concept and the assumption of a polytropic compression process. Then, discharge temperature of the refrigerant and power consumption of the compressor are also investigated. Three semiempirical models are constructed respectively. Further, to tune the unknown empirical parameters of the models, a social learning particle swarm optimization (SLPSO) algorithm is developed by using the real-time experimental data. An experimental apparatus of a refrigerant system is tested to validate the proposed models. The experimental results demonstrate that the proposed models accurately predict the performance of real-time operating compressors. Meanwhile, the models identified by the SLPSO algorithm are more accurate than those identified by the traditional least-squares method.
机译:在该研究中,提出了一种混合稳态压缩机模型,其可用于实时性能监测,控制和优化蒸汽压缩循环。在所提出的模型中,呈现了对质量流量的详细分析,其基于体积效率概念和多细胞压缩过程的假设。然后,还研究了制冷剂的放电温度和压缩机的功耗。三个半级模型分别构建。此外,为了调整模型的未知经验参数,通过使用实时实验数据开发了一种社会学习粒子群优化(SLPSO)算法。测试制冷剂系统的实验装置,以验证所提出的模型。实验结果表明,所提出的模型准确地预测了实时操作压缩机的性能。同时,由SLPSO算法识别的模型比传统最小二乘法所识别的模型更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号