首页> 外文期刊>Quality Control, Transactions >Predicting Influential Blogger’s by a Novel, Hybrid and Optimized Case Based Reasoning Approach With Balanced Random Forest Using Imbalanced Data
【24h】

Predicting Influential Blogger’s by a Novel, Hybrid and Optimized Case Based Reasoning Approach With Balanced Random Forest Using Imbalanced Data

机译:利用不平衡数据预测具有新颖,混合和优化的基于案例的推理方法,通过不平衡数据进行平衡随机林

获取原文
获取原文并翻译 | 示例

摘要

Bloggers possess the capability of understanding and influencing mass psychology to a wide community of fans and followers by posting their online valuable content. Their dominance over audience can be used as a helping hand in the corporate world which desires to disseminate their product or services among diversified people belonging to varying localities, and is always on the lookout for suitable and quick ways to grasp public access. Due to this reason, influential bloggers are preferred in the online market to initiate marketing campaigns which is a thought-provoking task due to loads of blogger communities. The novelty of this paper lies in the proposed Framework for Influential Blogger Prediction based on Blogger and Blog Features (IBP-BBF) using Case-Based Reasoning (CBR) which is not only capable of handling labeled data but also unstructured data (blogs) and imbalanced data in an optimized way. Detailed labelled and unstructured data are collected by online survey of 129 bloggers and text mining of their 32,200 blogs respectively. The classification results are compared and validated with state-of-the-art machine learning techniques by using standard evaluation measures respectively in the context of imbalanced data. The results show that the proposed IBP-BBF framework through CBR modeling outperforms existing techniques in classifying and adapting the influential blogger prediction. The IBP-BBF framework performed better as compared to baseline imbalanced data classification techniques. It is found that the Balanced Random Forest contributes towards the performance of CBR approach than Balanced Bagging Classifier and RUSBoost classifier. By using the CBR approach, baseline techniques can be optimized for influential blogger identification in a better way.
机译:博主通过发布在线有价值的内容,拥有对广大粉丝和粉丝社区的理解和影响大众心理的能力。他们对观众的主导地位可以用作企业界的帮助手,希望在属于不同的地方的多样化人群中传播其产品或服务,并且始终在寻找合适和快速的方式来掌握公众访问。由于这个原因,在线市场中,有影响力的博主在线市场首选,以启动营销活动,这是由于博主社区负荷引起的思想挑衅任务。本文的新颖性在于使用基于博主和博客特征(IBP-BBF)的有影响力的博客预测(IBP-BBF)使用基于案例的推理(CBR)的新颖框架,这不仅能够处理标记的数据,而且是非结构化数据(博客)和以优化的方式不平衡数据。通过在线调查分别通过在线调查和32,200博客的在线调查来收集详细的标签和非结构化数据。将分类结果进行比较和通过最先进的机器学习技术进行了验证,通过分别在不平衡数据的上下文中使用标准评估措施。结果表明,通过CBR建模的提议的IBP-BBF框架优于分类和调整有影响力的博客预测的现有技术。与基线不平衡数据分类技术相比,IBP-BBF框架更好地执行。结果发现,平衡的随机森林有助于CBR方法的性能,而不是平衡袋装分类器和Rusboost分类器。通过使用CBR方法,可以以更好的方式优化基线技术以实现有影响力的博客识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号