首页> 外文期刊>Quality Control, Transactions >An Improved Underdamped Asymmetric Bistable Stochastic Resonance Method and its Application for Spindle Bearing Fault Diagnosis
【24h】

An Improved Underdamped Asymmetric Bistable Stochastic Resonance Method and its Application for Spindle Bearing Fault Diagnosis

机译:一种改进的被抑制的不对称双稳态随机共振法及其对主轴轴承故障诊断的应用

获取原文
获取原文并翻译 | 示例

摘要

High-precision spindle bearing is one of the most critical and vulnerable parts in a motorized spindle. Its unexpected failure may lead to production loss. Stochastic resonance (SR) is a weak signal detection method, which can obtain noise energy in strong background noise and enhance incipient fault characteristics of spindle bearing. Based on the fact that asymmetry can improve the enhancement ability of asymmetric bistable SR in weak feature extraction, we introduce an underdamped well-width asymmetric bistable SR (UABSR) method to the field of bearing fault diagnosis for the first time. However, the engineering application of UABSR can still be limited by two aspects. Firstly, the SNR index can take effect only when the actual fault frequency is obtained in advance, so the UABSR method is at high-cost in real practices. Secondly, an appropriate band-pass filter band range of the bearing faults can hardly be obtained due to the massive impulsive noise in operations. Here an improved UABSR method for spindle bearing fault diagnosis is proposed. Infogram method is used to process and analysis the original vibration signal for resisting the influence from the impulsive noise and obtaining more accurate frequency range of spindle bearing fault. In addition, time domain zero-crossing (TDZC) index, as the index of the improved UABSR method, can directly reflect the fault characteristics of spindle bearings without knowing the accurate fault characteristic frequency in advance. Besides, the Quantum Genetic Algorithms (QGAs) and the fourth-order Runge-Kutta algorithm are combined to simultaneously obtain the optimal system parameter, the asymmetric ratio, the damping factor and the rescaling factor of the improved UABSR model. Comparing the Infogram and original UABSR methods, the improved UABSR method performs better effect in incipient spindle bearing fault diagnosis.
机译:高精度主轴轴承是电动主轴中最关键且易受攻击的零件之一。其意外的失败可能导致生产损失。随机共振(SR)是一种弱信号检测方法,可以在强大的背景噪声中获得噪声能量,并增强主轴轴承的初始故障特性。基于不对称性能提高不对称双稳态SR在弱特征提取中的增强能力的事实,我们首次将欠压井 - 宽度不对称的SR(UABSR)方法引入轴承故障诊断领域。然而,UABSR的工程应用仍然可以受到两个方面的限制。首先,只有在预先获得实际故障频率时,SNR指数才能生效,因此UABSR方法是实际实践的高成本。其次,由于操作中的大量脉冲噪声,几乎不能获得轴承故障的适当带通滤光带范围。这里提出了一种改进的主轴轴承故障诊断的UABSR方法。 ImoG方法用于处理和分析原始振动信号,以抵抗脉冲噪声的影响并获得更精确的主轴轴承故障频率范围。另外,时域零交叉(TDZC)索引,作为改进的UABSR方法的指标,可以直接反映主轴轴承的故障特性,而不提前了解精确的故障特征频率。此外,组合量子遗传算法(QGAS)和四阶runge-Kutta算法以同时获得改进的UABSR模型的最佳系统参数,不对称比率,阻尼因子和重新定位因子。比较信息图和原始UABSR方法,改进的UABSR方法对初始主轴轴承故障诊断进行了更好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号