首页> 外文期刊>Quality Control, Transactions >Vision-Based Fall Detection With Multi-Task Hourglass Convolutional Auto-Encoder
【24h】

Vision-Based Fall Detection With Multi-Task Hourglass Convolutional Auto-Encoder

机译:基于视觉的坠落检测多任务沙漏卷积自动编码器

获取原文
获取原文并翻译 | 示例

摘要

Fall detection is a hot research issue in intelligent video surveillance. Falls can generate physical and psychological damage, especially for the elderly. Different from most conventional vision-based fall detection methods typically relying on hand-crafted features, fall detection methods based on deep learning techniques can automatically learn features and hence have got widespread concern recently. However, as deep networks are increasingly applied to fall detection, the problem of information loss in the deep networks can not be ignored, because this will ultimately affect the performance of fall detection. To solve the above problem, we propose a vision-based fall detection method using multi-task hourglass convolutional auto-encoder (HCAE). In this method, hourglass residual units (HRUs) are introduced into the encoder of the HCAE to extract multiscale features by expanding receptive fields of neurons. A multi-task mechanism is presented to enhance the feature representativeness of the network by completing an auxiliary task of frame reconstruction while realizing the main task of fall detection. Experimental results demonstrate that, the proposed method can effectively achieve accurate fall detection with the shallow-layer network, and outperforms several state-of-the-art methods.
机译:跌倒检测是智能视频监控中的热门研究问题。瀑布可以产生身体和心理损害,特别是老人。与大多数传统的基于视觉的秋季检测方法不同,通常依赖于手工制作的特征,基于深度学习技术的落下检测方法可以自动学习特征,因此最近已经欣赏了广泛的关注。然而,随着深度网络越来越多地应用于崩溃检测,无法忽视深网络中信息丢失问题,因为这最终会影响下降检测的性能。为了解决上述问题,我们提出了一种使用多任务沙漏卷积自动编码器(HCAE)的视觉的坠落检测方法。在该方法中,将沙漏残留单元(HRU)引入HCAE的编码器中,通过扩增神经元的接受领域提取多尺度特征。提出了一种多任务机制,以通过完成帧重建的辅助任务来增强网络的特征表示性,同时实现坠落检测的主要任务。实验结果表明,该方法可以用浅层网络有效地实现精确的下落检测,并且优于几种最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号