首页> 外文期刊>Quality Control, Transactions >Mechanical Performance and Microstructure Prediction of Hypereutectoid Rail Steels Based on BP Neural Networks
【24h】

Mechanical Performance and Microstructure Prediction of Hypereutectoid Rail Steels Based on BP Neural Networks

机译:基于BP神经网络的过度切开轨道钢的机械性能和微观结构预测

获取原文
获取原文并翻译 | 示例

摘要

Rapid development of railway has heightened the need for the researches on hypereutectoid heavy rail steels. Artificial intelligence method has become an effective tool to realize materials composition design. In this paper, BP neural network models are constructed to determine the relationship among (Cr, P, S, V) alloying elements, mechanical performance and microstructure of hypereutectoid rail steels. Analysis based on this model reveals that Cr is the most prominent element for mechanical properties. The tensile strength, yield strength and hardness can be improved with the increasing content of Cr and V. The addition of P and S seems to decrease the strength and hardness of rail steels. Furthermore, the addition of (Cr, P, S, V) has a slight impact on the content of pearlite dual phases. The increase of (Cr, V) and decrease of (P, S) can contribute to an increase in ferrite content with the associated decrease in cementite. Experimental results agree well with the prediction based on the BP neural network model. This work provides an excellent basis for assessing the mechanical performance and microstructure of hypereutectoid heavy rail steels.
机译:铁路的快速发展提高了对过度切开重型铁路钢研究的需求。人工智能方法已成为实现材料成分设计的有效工具。本文构建了BP神经网络模型,以确定(Cr,P,S,V)合金元素,机械性能和微观化轨道钢的关系。基于该模型的分析表明,CR是机械性能最突出的元素。随着Cr和V的增加,可以提高拉伸强度,屈服强度和硬度。添加P和S的添加似乎降低了轨道钢的强度和硬度。此外,添加(Cr,P,S,V)对珠光体双阶段的含量略有影响。 (Cr,V)和(p,s)的增加可以有助于铁氧体含量的增加与渗碳液相关的相关降低。基于BP神经网络模型的预测,实验结果很好。这项工作为评估过度切开重型铁路钢的机械性能和微观结构提供了优异的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号