首页> 外文期刊>Quality Control, Transactions >Improving the Performance of Convolutional Neural Network for the Segmentation of Optic Disc in Fundus Images Using Attention Gates and Conditional Random Fields
【24h】

Improving the Performance of Convolutional Neural Network for the Segmentation of Optic Disc in Fundus Images Using Attention Gates and Conditional Random Fields

机译:使用注意门和条件随机字段提高眼底图像中光盘分割的卷积神经网络的性能

获取原文
获取原文并翻译 | 示例

摘要

The localization and segmentation of optic disc (OD) in fundus images is a crucial step in the pipeline for detecting the early onset of retinal diseases, such as macular degeneration, diabetic retinopathy, glaucoma, etc. In this paper, we are proposing a novel convolutional neural network architecture for the precise segmentation of the OD in fundus images. We modify the basic architectures of DeepLab v3 & x002B; and U-Net models by integrating a novel attention module between the encoder and decoder to attain the finest accuracy. We also use fully-connected conditional random fields to further boost the performance of these architectures. We compare the results of our best proposed architecture against other established architectures for optic disc segmentation on our private dataset, as well as on publicly available datasets, namely, DRIONS-DB, RIM-ONE v.3, and DRISHTI-GS. The results obtained with the proposed method outperforms the existing methods in the literature.
机译:光盘(OD)在眼底图像中的定位和分割是用于检测视网膜疾病早期发作的管道中的重要步骤,例如黄斑变性,糖尿病视网膜病变,青光眼等。在本文中,我们提出了一种小说卷积神经网络架构,用于眼底图像中OD的精确分割。我们修改Deeplab V3和X002B的基本架构;通过集成编码器和解码器之间的新型关注模块来实现最精度的U-Net模型。我们还使用完全连接的条件随机字段来进一步提高这些架构的性能。我们将我们最佳建议架构的结果与我们的私有数据集上的视镜光盘分段以及公开的数据集,即Drions-DB,RIM-One V.3和Drishti-GS进行了比较。通过该方法获得的结果优于文献中现有的现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号